Advertisement

Zusammenfassung

Die zytologische, chemische, bakteriologische und immunologische Analyse der Zerebrospinalflüssigkeit, kurz Liquor, ist ein essenzieller Bestandteil der neurologischen Diagnostik. Neben dem Nachweis oder Ausschluss eines entzündlichen Erreger- oder auto immunologisch bedingten Prozesses liefert die Liquoruntersuchung wichtige Hinweise auf neoplastische Erkrankungen der Meningen und des ZNS sowie auf die CT-negative Subarachnoidalblutung und auf die Ursache degenerativer Prozesse. Die Wahl und Dosierung der speziellen Therapeu tika bei neurologischen Erkrankungen ist in hohem Maße abhängig vom Liquorbefund.

Aufgrund ihrer Wichtigkeit für das Verständnis pathophysiologischer Zusammenhänge sowie den sich daraus ergebenden diagnostischen Möglichkeiten wird der Blut-Liquor- Schrankenfunktion, dem Liquorfluss und der Neuroimmunologie im folgenden besondere Bedeutung bei ge messen. Die Grundlagen der Auswertung in Reiber Diagrammen und die integrierende Darstellung krankheitsbezogener Datenmuster im Liquor werden ausführlich dargestellt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

Zitierte Literatur

  1. Andersson M, Alvarez-Cermeno J, Bernardi G et al. (1994) Cerebrospinal fluid in the diagnosis of multiple sclerosis: A consensus report. J Neurol Neurosurg Psychiatry 57:897–902PubMedGoogle Scholar
  2. Bradbury MWB (1993) Anatomy and physiology of cerebrospinal fluid. In: Schurr PH, Polkey CE (eds) Hydrocephalus. Oxford University Press, OxfordGoogle Scholar
  3. Burkhardt D, Schipper HI, Kaboth U, Felgenhauer K (1992) IgA producing primary intracerebral lymphoma. J Neurol Neurosurg Psychiatry 55:623–625PubMedGoogle Scholar
  4. Christen HJ, Hanefeld F, Eiffert H, Thomssen R (1993) Epidemiology and clinical manifestation of Lyme borreliosis in childhood. Acta Paediatr Supp 386:1–76Google Scholar
  5. Cinque P, Cleator GM, Weber T, Monteyne P, Sindic CJ, Van Coon AM (1996) The role of laboratory investigation in the diagnosis and management of patients with suspected herpes simplex encephalitis: a consensus report. J Neurol Neurosurg Psychiatry 61:339–345PubMedGoogle Scholar
  6. Cinque P, Scarpellini P, Vago L et al. (1997) Diagnosis of central nervous system complications in HIV-infected patients: cerebrospinal fluid analysis by the polymerase chain reaction. Aids 11:1–17CrossRefPubMedGoogle Scholar
  7. Conrad AJ, Chiang EY, Andeen LE et al. (1994) Quantitation of intrathecal measles virus IgG antibody synthesis rate: Subacute sclerosing panencephalitis and multiple sclerosis. J Neuroimmunol 54:99–108CrossRefPubMedGoogle Scholar
  8. Davson H, Segal MB (1996) Physiology of the CSF and blood-brain barriers. CRC, Boca RatonGoogle Scholar
  9. Dorta AJ, Reiber H (1998) Intrathecal synthesis of immunoglobulins in eosinophilic meningoencephalitis due to Angiostrongylus cantonensis. Clin Diagn Lab Immunol 5:452–455Google Scholar
  10. Ekstedt J (1978) CSF hydrodynamic studies in man. 2. Normal hydrodynamic variables related to CSF pressure and flow. J Neurol Neurosurg Psychiatry 41:345–353PubMedGoogle Scholar
  11. Felgenhauer K (1995) Spezielle Pathobiochemie des Liquorkompartiments. In: Greiling H, Gressner AM (Hrsg) Lehrbuch der klinischen Chemie und Pathobiochemie, 3. Aufl. Schattauer, Stuttgart, S 1065–1085Google Scholar
  12. Felgenhauer K, Reiber H (1992) The diagnostic relevance of antibody specificity indices in multiple sclerosis and herpes virus induced diseases of the nervous system. Clin Invest 70:28–37CrossRefGoogle Scholar
  13. Godec MS, Asher DM, Murray RS, Shin ML, Greenham LW, Gibb CJ, Gajdusek DC (1992) Absence of measles, mumps and rubella viral genomic sequences from multiple sclerosis brain tissue by polymerase chain reaction. Ann Neurol 32:401–404CrossRefPubMedGoogle Scholar
  14. Graef I, Henze T, Reiber H (1994) Polyspezifische Immunreaktion im ZNS bei Autoimmunerkrankungen mit ZNS Beteiligung. Z Ärztl Fortbild 88:587–691Google Scholar
  15. Hanefeld F, Bauer HJ, Christen H-J, Kruse B, Bruhn H, Frahm J (1991) Multiple sclerosis in childhood: Report of 15 cases. Brain Dev 13:410–416PubMedGoogle Scholar
  16. Hulstaert F, Blennow K, Evanoiu A, Schoonderwaldt HC et al. (1999) Improved discrimination of AD patients using b-amyloid (1–42) and tau levels in CSF. Neurology 52: 1555–1562PubMedGoogle Scholar
  17. Jacobi C, Reiber H (1988) Clinical relevance of increased neuron-specific enolase concentration in cerebrospinal fluid. Clin Chim Acta 177:49–54CrossRefPubMedGoogle Scholar
  18. Jacobi C, Lange P, Reiber H (2005) The intrathecal antibody synthesis: quantitative discrimination between monospecific, virus-driven and polyspecific immune network related antibodies. J Neuroimmunol (accepted)Google Scholar
  19. Kluge H, Wieczorek V, Linke E, Zimmermann K, Witte OW (2005) Atlas der praktischen Liquorzytologie. Thieme, StuttgartGoogle Scholar
  20. Korenke GC, Reiber H, Hunnemann DH, Hanefeld F (1997) Intrathecal IgA Synthesis in X-Linked cerebral adrenoleukodystrophy. J Child Neurol 12(5):314–320PubMedGoogle Scholar
  21. Kruse T, Reiber H, Neuhoff V (1985) Amino acid transport across the human blood-CSF barrier. An evaluation graph for amino acid concentrations in cerebrospinal fluid. J Neurol Sci 70:129–138CrossRefPubMedGoogle Scholar
  22. Lejon V, Reiber H, Legros D et al. (2003) Intrathecal immune response pattern for improved diagnosis of central nervous system involvement in trypanosomiasis. J Infect Dis 187:1475–1483CrossRefPubMedGoogle Scholar
  23. May C, Kays SA, Atack JR, Schapiro MB, Friedland RP, Rapoport SI (1990) Cerebrospinal fluid production is reduced in healthy aging. Neurology 40:500–503PubMedGoogle Scholar
  24. Mayer H, Zaenker KS, van der Heiden U (1995) A basic mathematical model of the immune response. Chaos 5:155–161CrossRefPubMedGoogle Scholar
  25. McDonald WI, Compston A, Edan G et al. (2001) Recommended diagnostic criteria for multiple sclerosis: guidelines from the international panel on the diagnosis of multiple sclerosis. Ann Neurol 50:121–127CrossRefPubMedGoogle Scholar
  26. Meurman O, Lehtonen OP (1988) Fluctuations of virus antibody levels in healthy adults. Eur J Clin Microbiol Infect Dis 7:656–658CrossRefPubMedGoogle Scholar
  27. Monteyne PH, Sindic CJM (1995) The diagnosis of tuberculous meningitis. Acta Neurol Belg 95:80–87PubMedGoogle Scholar
  28. Oehmichen M (1976) Cerebrospinal fluid cytology. An introduction and atlas. Thieme, StuttgartGoogle Scholar
  29. Otto M, Wiltfang J, Cepek L et al. (2002) Tau protein and 14-3-3 protein in the differential diagnosis of Creutzfeldt-Jakob disease. Neurology 58:192–197PubMedGoogle Scholar
  30. Peter JB, Shoenfeld Y (eds) (1996) Autoantibodies. Elsevier, AmsterdamGoogle Scholar
  31. Pohl D, Rostasy K, Reiber H et al. (2004) CSF characteristics in early onset multiple sclerosis: a tool for early diagnosis. Neurology 63:1966–1967PubMedGoogle Scholar
  32. Prange HW, Moskophides M, Schipper HI, Müller F (1983) Relationship between neurological features and intrathecal synthesis of IgG antibodies to Treponema pallidum in untreated and treated human neurosyphilis. J Neurol 230:241–252CrossRefPubMedGoogle Scholar
  33. Quentin CD, Reiber H (2004) Fuchs’ Heterochromic Cyclitis — rubella virus antibodies and genome in aqueous humor. AJO 138:46–54Google Scholar
  34. Prange HW, Menck S, Beuche W, Voth E (1990) Aktuelle Entwicklungen in Diagnostik und Therapie der Herpes-simplex-Enzephalitis. Akt Neurol 17:158–163Google Scholar
  35. Prange HW, Aue G, Frauendorf H, Reiber H (1995) Die neuronenspezifische Enolase als Prognosemarker bei zerebraler Hypoxie. Intensivmed 32:17–22Google Scholar
  36. Reiber H (1994) Flow rate of cerebrospinal fluid (CSF) — a concept common to normal blood-CSF barrier function and dysfunction in neurological diseases. J Neurol Sci 122:189–203CrossRefPubMedGoogle Scholar
  37. Reiber H (1995a) External quality assessment in clinical neurochemistry: Survey of analysis for cerebrospinal fluid (CSF) proteins based on CSF/serum quotients. Clin Chem 41:256–263PubMedGoogle Scholar
  38. Reiber H (1995b) Die diagnostische Bedeutung neuroimmunologischer Reaktionsmuster im Liquor cerebrospinalis. Lab Med 19:444–462Google Scholar
  39. Reiber H (2001) Dynamics of brain-derived proteins in cerebrospinal fluid. Clin Chim Acta 310:173–186CrossRefPubMedGoogle Scholar
  40. Reiber H (2003) Proteins in cerebrospinal fluid and blood: Barriers, CSF flow rate and source-related dynamics. Rest Neurol Neurosci 21:79–96Google Scholar
  41. Reiber H (2005a) Quantitative Proteinanalytik, Quotientendiagramme und krankheitsbezogene Datenmuster. In: Zettl UK, Lehmitz R, Mix E (Hrsg) Klinische Liquordiagnostik, 2. Aufl. de Gruyter, BerlinGoogle Scholar
  42. Reiber H (2005b) Erregerspezifische Antikörper. In: Zettl UK, Lehmitz R, Mix E (Hrsg) Klinische Liquordiagnostik, 2. Aufl. de Gruyter, BerlinGoogle Scholar
  43. Reiber H (2005c) Qualitätskontrolle für Proteinanalytik. In: Zettl UK, Lehmitz R, Mix E (Hrsg) Klinische Liquordiagnostik, 2. Aufl. de Gruyter, BerlinGoogle Scholar
  44. Reiber H (2005d) Liquordiagnostik. In: Thomas L (Hrsg) Labor und Diagnose, 6. Aufl. Med Verl Ges, MarburgGoogle Scholar
  45. Reiber H, Felgenhauer K (1987) Protein transfer at the blood cerebrospinal fluid barrier and the quantitation of the humoral immune response within the central nervous system. Clin Chim Acta 163:319–328CrossRefPubMedGoogle Scholar
  46. Reiber H, Lange P (1991) Quantification of virus-specific antibodies in cerebrospinal fluid and serum: Sensitive and specific detection of antibody synthesis in brain. Clin Chem 37:1153–1160PubMedGoogle Scholar
  47. Reiber H, Peter JB (2001) Cerebrospinal fluid analysis — disease-related data patterns and evaluation programs. J Neurol Sci 184:101–122CrossRefPubMedGoogle Scholar
  48. Reiber H, Ruff M, Uhr M (1993) Ascorbate concentration in human cerebrospinal fluid (CSF) and serum. Intrathecal accumulation and CSF flow rate Clin Chim Acta 217:163–173Google Scholar
  49. Reiber H, Otto M, Trendelenburg C, Wormek A (2001) Reporting cerebrospinal fluid data — knowledge base and interpretation software. Clin Chem Lab Med 39:324–332CrossRefPubMedGoogle Scholar
  50. Reiber H, Thompson EJ, Grimsley G et al. (2003 a) Quality assurance for cerebrospinal fluid protein analysis: International Consensus by an Internet-Based Group Discussion. Clin Chem Lab Med 41:331–337CrossRefPubMedGoogle Scholar
  51. Reiber H, Walther K, Althaus H (2003 b) Beta-trace protein as sensitive marker for CSF Rhinorhea and CSF Otorhea. Acta Neurol Scand 108:1–4CrossRefGoogle Scholar
  52. Reiber H, Sindic C, Thompson EJ (2006) Cerebrospinal fluid — clinical neurochemistry of neurological diseases. (in Vorbereitung)Google Scholar
  53. Rostasy K, Pohl D, Lange P, Ohlenbusch A, Eiffert H, Reiber H, Hanefeld F (2003) Detection of intrathecal Chlamydia pneumonia IgG antibody synthesis and Chlamydia pneumonia genome in children and adolescents with Multiple Sclerosis. Neurology 61:125–128PubMedGoogle Scholar
  54. Schaarschmidt H, Prange H, Reiber H (1994) Neuron-specific enolase concentrations in blood as a prognostic parameter in cerebrovascular diseases. Stroke 24:558–565Google Scholar
  55. Schmutzhard E (2005) Mikrobiologische Diagnostik im Liquor bei Parasitosen. In: Zettl UK, Lehmitz R, Mix E (Hrsg) Klinische Liquordiagnostik, 2. Aufl. de Gruyter, BerlinGoogle Scholar
  56. Shoji H, Honda Y, Murai I, Sato Y, Oizumik K, Hondo R (1992) Detection of VZV-DNA by polymerase chain reaction in CSF of patients with herpes zoster meningitis. J Neurol 239:69–70CrossRefPubMedGoogle Scholar
  57. Sindic CJM, Monteyne PH, Laterre EC (1994) The intrathecal synthesis of virus-specific oligoclonal IgG in multiple sclerosis. J Neuroimmunol 54:75–80CrossRefPubMedGoogle Scholar
  58. Terryberry JW, Shoenfeld Y, Gilburd B et al. (1995) Myelin-and microbe-specific antibodies in Guillain-Barré Syndrome. J Clin Lab Anal 9(5):308–319PubMedGoogle Scholar
  59. Thompson EJ (2005) The CSF proteins: A biochemical approach, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  60. Tumani H, Nölker G, Reiber H (1995) Relevance of cerebro spinal fluid parameters for early diagnosis in neurobor reliosis. Neurology 45:1663–1670PubMedGoogle Scholar
  61. Uhr M (2001) Neurologische Tropenkrankheiten. In: Prange H, Bitsch A (Hrsg) Infektionserkrankungen des Zentralnervensystems. Wissenschaftl Verl Ges, StuttgartGoogle Scholar
  62. Vandvic B, Norrby E (1973) Oligoclonal IgG antibody response in the CNS to different measles virus antigens in subacute sclerosing panencephalitis. Proc Natl Acad Sci 70:1060–1063Google Scholar
  63. Vandvic B, Norrby E, Nordal HJ (1979) Optic neuritis: local synthesis in the CNS of oligoclonal antibodies to measles, mumps, rubella and herpes simplex viruses. Acta Neurol Scand 60:204–213Google Scholar
  64. Vandvic B, Nilsen RE, Vardal F, Norrby E (1982) Mumps meningitis: specific and non-specific antibody responses in the CNS. Acta Neurol Scand 65:468–487Google Scholar
  65. Van Eldik LJ, Wainwright MS (2003) The Janus face of glial-derived S100B. Beneficial and detrimental functions in the brain. Rest Neurol Neurosci 21:97–108Google Scholar
  66. Varela FJ, Coutinho A (1991) Second generation immune networks. Immunol Today 12:159–166PubMedGoogle Scholar
  67. Voltz R (2002) Paraneoplastic neurological syndroms: an update on diagnosis, pathogenesis and therapy. Lancet Neurology 1:294–304PubMedGoogle Scholar
  68. Weber T, Jürgens S, Lüer W (1987) Cerebrospinal fluid immunoglobulins and virus-specific antibodies in disorders affecting the facial nerve. J Neurol 234:308–314CrossRefPubMedGoogle Scholar
  69. Wildemann B, Reiber H, Oschmann P (2005) Neurologische Labordiagnostik. Thieme, StuttgartGoogle Scholar
  70. Zerr I, Bodemer M, Gefeller O et al. (1998) Detection of 14-3-3 protein in the cerebrospinal fluid supports the diagnosis of Creutzfeldt-Jakob disease. Ann Neurol 43:32–40CrossRefPubMedGoogle Scholar
  71. Zerr I, Bodemer M, Räcker S et al. (1995) Cerebrospinal fluid concentration of neuron-specific enolase in diagnosis of Creutzfeldt-Jakob disease. Lancet 345:1609–1610CrossRefPubMedGoogle Scholar
  72. Zettl UK, Lehmitz R, Mix E (Hrsg) (2005) Klinische Liquordiagnostik, 2. Aufl. de Gruyter, BerlinGoogle Scholar

Copyright information

© Springer Medizin Verlag Heidelberg 2006

Authors and Affiliations

  • H. Reiber
    • 1
  1. 1.Göttingen

Personalised recommendations