Skip to main content

Sugar Metabolism in Yeasts: an Overview of Aerobic and Anaerobic Glucose Catabolism

  • Chapter

Part of the book series: The Yeast Handbook ((YEASTHDB))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albers E, Larsson C, Liden G, Niklasson C, Gustafsson L (1996) Influence of the nitrogen source on Saccharomyces cerevisiae anaerobic growth and product formation. Appl Environ Microbiol 62:3187–3195

    PubMed  CAS  Google Scholar 

  • Andreasen AA, Stier TJB (1953) Anaerobic nutrition of Saccharomyce cerevisiae. I. Ergosterol requirement for growth in a defined medium. J Cell Comp Physiol 41:23–36

    Article  CAS  Google Scholar 

  • Andreasen AA, Stier TJB (1954) Anaerobic nutrition of Saccharomyces cerevisiae. II. Unsaturated fatty acid requirement for growth in a defined medium. J Cell Comp Physiol 43:271–281

    Article  CAS  Google Scholar 

  • Ansell R, Granath K, Hohmann S, Thevelein JM, Adler L (1997) The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBO J 16:2179–2187

    Article  PubMed  CAS  Google Scholar 

  • Arikawa Y, Enomoto K, Muratsubakin H, Okazaki M (1998) Soluble fumarate reductase isoenzymes from Saccharomyces cerevisiae are required for anaerobic growth. FEMS Microbiol Lett 165:111–116

    Article  PubMed  CAS  Google Scholar 

  • Atzpodien W, Gancedo JM, Duntze W, Holzer H (1968) Isoenzymes of malate dehydrogenase in Saccharomyces cerevisiae. Eur J Biochem 7:58–62

    Article  PubMed  CAS  Google Scholar 

  • Bakker BM, Bro C, Kotter P, Luttik MA, van Dijken JP, Pronk JT (2000) The mitochondrial alcohol dehydrogenase Adh3p is involved in a redox shuttle in Saccharomyces cerevisiae. J Bacteriol 182:4730–4737

    Article  PubMed  CAS  Google Scholar 

  • Bakker BM, Overkamp KM, van Maris AJ, Kotter P, Luttik MA, van Dijken JP, Pronk JT (2001) Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol Rev 25:15–37

    Article  PubMed  CAS  Google Scholar 

  • Barnett J, Payne R, Yarrow D (2000) Yeasts: characteristics and identification, 3rd edn. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Beauvoit B, Rigoulet M, Bunoust O, Raffard G, Canioni P, Guerin B (1993) Interactions between glucose metabolism and oxidative phosphorylations on respiratory-competent Saccharomyces cerevisiae cells. Eur J Biochem 214:163–172

    Article  PubMed  CAS  Google Scholar 

  • Bjorkqvist S, Ansell R, Adler L, Liden G (1997) Physiological response to anaerobicity of glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae. Appl Environ Microbiol 63:128–132

    PubMed  CAS  Google Scholar 

  • Blank LM, Sauer U (2004) TCA cycle activity in Saccharomyces cerevisiae is a function of the environmentally determined specific growth and glucose uptake rates. Microbiology 150:1085–1093

    Article  PubMed  CAS  Google Scholar 

  • Blomberg A, Larsson C, Gustafsson L (1988) Microcalorimetric monitoring of growth of Saccharomyces cerevisiae: osmotolerance in relation to physiological state. J Bacteriol 170:4562–4568

    PubMed  CAS  Google Scholar 

  • Boles E, Hollenberg CP (1997) The molecular genetics of hexose transport in yeasts. FEMS Microbiol Rev 21:85–111

    Article  PubMed  CAS  Google Scholar 

  • Boles E, de Jong-Gubbels P, Pronk JT (1998) Identification and characterization of MAE1, the Saccharomyces cerevisiae structural gene encoding mitochondrial malic enzyme. J Bacteriol 180:2875–2882

    PubMed  CAS  Google Scholar 

  • Bruinenberg PM (1986) The NADP(H) redox couple in yeast metabolism. Antonie van Leeuwenhoek 52:411–429

    Article  PubMed  CAS  Google Scholar 

  • Bruinenberg PM, van Dijken JP, Scheffers WA (1983) An enzymic analysis of NADPH production and consumption in Candida utilis. J Gen Microbiol 129:965–971

    PubMed  CAS  Google Scholar 

  • Bulder CJ (1971) Anaerobic growth, ergosterol content and sensitivity to a polyene antibiotic, of the yeast Schizosaccharomyces japonicus. Antonie van Leeuwenhoek 37:353–358

    Article  PubMed  CAS  Google Scholar 

  • Bunoust O, Devin A, Averet N, Camougrand N, Rigoulet M (2005) Competition of electrons to enter the respiratory chain: a new regulatory mechanism of oxidative metabolism in Saccharomyces cerevisiae. J Biol Chem 280:3407–3413

    PubMed  CAS  Google Scholar 

  • Camarasa C, Grivet JP, Dequin S (2003) Investigation by 13C-NMR and tricarboxylic acid (TCA) deletion mutant analysis of pathways for succinate formation in Saccharomyces cerevisiae during anaerobic fermentation. Microbiology 149:2669–2678

    Article  PubMed  CAS  Google Scholar 

  • Ciriacy M (1979) Isolation and characterization of further cis-and trans-acting regulatory elements involved in the synthesis of glucose-repressible alcohol dehydrogenase (ADHII) in Saccharomyces cerevisiae. Mol Gen Genet 176:427–431

    Article  PubMed  CAS  Google Scholar 

  • De Deken RH (1966) The Crabtree effect: a regulatory system in yeast. J Gen Microbiol 44:149–156

    PubMed  Google Scholar 

  • De Jong-Gubbels P, Bauer J, Niederberger P, Stuckrath I, Kotter P, van Dijken JP, Pronk JT (1998) Physiological characterisation of a pyruvate-carboxylase-negative Saccharomyces cerevisiae mutant in batch and chemostat cultures. Antonie van Leeuwenhoek 74:253–263

    PubMed  Google Scholar 

  • De Vries S, Grivell LA (1988) Purification and characterization of a rotenone-insensitive NADH:Q6 oxidoreductase from mitochondria of Saccharomyces cerevisiae. Eur J Biochem 176:377–384

    Article  PubMed  Google Scholar 

  • De Vries S, Marres CA (1987) The mitochondrial respiratory chain of yeast. Structure and biosynthesis and the role in cellular metabolism. Biochim Biophys Acta 895:205–239

    PubMed  Google Scholar 

  • Dejean L, Beauvoit B, Guerin B, Rigoulet M (2000) Growth of the yeast Saccharomyces cerevisiae on a non-fermentable substrate: control of energetic yield by the amount of mitochondria. Biochim Biophys Acta 1457:45–56

    PubMed  CAS  Google Scholar 

  • DeRisi JL, Iyer VR, Brown PO (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680–686

    Article  PubMed  CAS  Google Scholar 

  • Drgon T, Sabova L, Nelson N, Kolarov J (1991) ADP/ATP translocator is essential only for anaerobic growth of yeast Saccharomyces cerevisiae. FEBS Lett 289:159–162

    Article  PubMed  CAS  Google Scholar 

  • Enomoto K, Arikawa Y, Muratsubaki H (2002) Physiological role of soluble fumarate reductase in redox balancing during anaerobiosis in Saccharomyces cerevisiae. FEMS Microbiol Lett 215:103–108

    Article  PubMed  CAS  Google Scholar 

  • Eriksson P, Andre L, Ansell R, Blomberg A, Adler L (1995) Cloning and characterization of GPD2, a second gene encoding sn-glycerol 3-phosphate dehydrogenase (NAD+) in Saccharomyces cerevisiae, and its comparison with GPD1. Mol Microbiol 17:95–107

    PubMed  CAS  Google Scholar 

  • Flikweert MT, van der Zanden L, Janssen WM, Steensma HY, van Dijken JP, Pronk JT (1996) Pyruvate decarboxylase: an indispensable enzyme for growth of Saccharomyces cerevisiae on glucose. Yeast 12:247–257

    Article  PubMed  CAS  Google Scholar 

  • Flores CL, Rodriguez C, Petit T, Gancedo C (2000) Carbohydrate and energy-yielding metabolism in non-conventional yeasts. FEMS Microbiol Rev 24:507–529

    Article  PubMed  CAS  Google Scholar 

  • Forsberg H, Ljungdahl PO (2001) Sensors of extracellular nutrients in Saccharomyces cerevisiae. Curr Genet 40:91–109

    Article  PubMed  CAS  Google Scholar 

  • Fukuhara H (2003) The Kluyver effect revisited. FEMS Yeast Res 3:327–331

    PubMed  CAS  Google Scholar 

  • Gancedo C, Serrano R (1989) Energy yielding metabolism. In: Rose AH, Harrison JS (eds) The yeasts. Academic, London, pp 205–259

    Google Scholar 

  • Gojkovic Z, Knecht W, Zameitat E, Warneboldt J, Coutelis JB, Pynyaha Y, Neuveglise C, Moller K, Loffler M, Piskur J (2004) Horizontal gene transfer promoted evolution of the ability to propagate under anaerobic conditions in yeasts. Mol Genet Genom 271:387–393

    CAS  Google Scholar 

  • Gombert AK, Moreira dos Santos M, Christensen B, Nielsen J (2001) Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different conditions of glucose repression. J Bacteriol 183:1441–1451

    Article  PubMed  CAS  Google Scholar 

  • Gonzaléz-Siso MI, Freire Picos MA, Cerdan ME (1996) Reoxidation of the NADPH produced by the pentose phosphate pathway is necessary for the utilization of glucose by Kluyveromyces lactis rag2 mutants. FEBS Lett 387:7–10

    PubMed  Google Scholar 

  • Gonzaléz-Siso MI, Freire-Picos MA, Ramil E, Gonzalez-Dominguez M, Rodriguez Torres A, Cerdan ME (2000) Respirofermentative metabolism in Kluyveromyces lactis: Insights and perspectives. Enzyme Microb Technol 26:699–705

    PubMed  Google Scholar 

  • Hanl L, Sommer P, Arneborg N (2004) The effect of decreasing oxygen feed rates on growth and metabolism of Torulaspora delbrueckii. Appl Microbiol Biotechnol 67:113–118

    PubMed  Google Scholar 

  • Heerde E, Radler F (1978) Metabolism of the anaerobic formation of succinic acid by Saccharomyces cerevisiae. Arch Microbiol 117:269–276

    Article  CAS  Google Scholar 

  • Jeffries TW, Jin YS (2004) Metabolic engineering for improved fermentation of pentoses by yeasts. Appl Microbiol Biotechnol 63:495–509

    Article  PubMed  CAS  Google Scholar 

  • Kappeli O (1986) Regulation of carbon metabolism in Saccharomyces cerevisiae and related yeasts. Adv Microb Physiol 28:181–203

    PubMed  CAS  Google Scholar 

  • Kiers J, Zeeman AM, Luttik M, Thiele C, Castrillo JI, Steensma HY, van Dijken JP, Pronk JT (1998) Regulation of alcoholic fermentation in batch and chemostat cultures of Kluyveromyces lactis CBS 2359. Yeast 14:459–469

    Article  PubMed  CAS  Google Scholar 

  • Kispal G, Cseko J, Alkonyi I, Sandor A (1991) Isolation and characterization of carnitine acetyltransferase from S. cerevisiae. Biochim Biophys Acta 1085:217–222

    PubMed  CAS  Google Scholar 

  • Kolarov J, Kolarova N, Nelson N (1990) A third ADP/ATP translocator gene in yeast. J Biol Chem 265:12711–12716

    PubMed  CAS  Google Scholar 

  • Kruckeberg AL, Dickinson JR (2004) Carbon metabolism. In: Dickinson JR, Schweizer M (eds) The metabolism and molecular physiology of Saccharomyces cerevisiae. CRC, London, pp 42–103

    Google Scholar 

  • Lagunas R (1979) Energetic irrelevance of aerobiosis for S. cerevisiae growing on sugars. Mol Cell Biochem 27:139–146

    Article  PubMed  CAS  Google Scholar 

  • Lagunas R (1981) Is Saccharomyces cerevisiae a typical facultative anaerobe? Trends Biochem Sci 6:201–202

    Article  CAS  Google Scholar 

  • Lagunas R (1986) Misconceptions about the energy metabolism of Saccharomyces cerevisiae. Yeast 2:221–228

    Article  PubMed  CAS  Google Scholar 

  • Lagunas R (1993) Sugar transport in Saccharomyces cerevisiae. FEMS Microbiol Rev 10:229–242

    PubMed  CAS  Google Scholar 

  • Larsson K, Ansell R, Eriksson P, Adler L (1993) A gene encoding sn-glycerol 3-phosphate dehydrogenase (NAD+) complements an osmosensitive mutant of Saccharomyces cerevisiae. Mol Microbiol 10:1101–1111

    PubMed  CAS  Google Scholar 

  • Larsson K, Bohl F, Sjostrom I, Akhtar N, Strand D, Mechler BM, Grabowski R, Adler L (1998) The Saccharomyces cerevisiae SOP1 and SOP2 genes, which act in cation homeostasis, can be functionally substituted by the Drosophila lethal(2)giant larvae tumor suppressor gene. J Biol Chem 273:33610–33618

    PubMed  CAS  Google Scholar 

  • Lawson JE, Gawaz M, Klingenberg M, Douglas MG (1990) Structure-function studies of adenine nucleotide transport in mitochondria. I. Construction and genetic analysis of yeast mutants encoding the ADP/ATP carrier protein of mitochondria. J Biol Chem 265:14195–14201

    PubMed  CAS  Google Scholar 

  • Luttik MA, Overkamp KM, Kotter P, de Vries S, van Dijken JP, Pronk JT (1998) The Saccharomyces cerevisiae NDE1 and NDE2 genes encode separate mitochondrial NADH dehydrogenases catalyzing the oxidation of cytosolic NADH. J Biol Chem 273:24529–24534

    Article  PubMed  CAS  Google Scholar 

  • Marres CA, de Vries S, Grivell LA (1991) Isolation and inactivation of the nuclear gene encoding the rotenone-insensitive internal NADH: ubiquinone oxidoreductase of mitochondria from Saccharomyces cerevisiae. Eur J Biochem 195:857–862. Erratum in: Eur J Biochem (1991) 200:812

    Article  PubMed  CAS  Google Scholar 

  • McAlister-Henn L, Small WC (1997) Molecular genetics of yeast TCA cycle isozymes. Prog Nucleic Acid Res Mol Biol 57:317–339

    PubMed  CAS  Google Scholar 

  • McCammon MT, Epstein CB, Przybyla-Zawislak B, McAlister-Henn L, Butow RA (2003) Global transcription analysis of Krebs tricarboxylic acid cycle mutants reveals an alternating pattern of gene expression and effects on hypoxic and oxidative genes. Mol Biol Cell 14:958–972

    Article  PubMed  CAS  Google Scholar 

  • Meaden PG, Dickinson FM, Mifsud A, Tessier W, Westwater J, Bussey H, Midgley M (1997) The ALD6 gene of Saccharomyces cerevisiae encodes a cytosolic, Mg(2+)-activated acetaldehyde dehydrogenase. Yeast 13:1319–1327

    Article  PubMed  CAS  Google Scholar 

  • Minard KI, Jennings GT, Loftus TM, Xuan D, McAlister-Henn L (1998) Sources of NADPH and expression of mammalian NADP+-specific isocitrate dehydrogenases in Saccharomyces cerevisiae. J Biol Chem 273:31486–31493

    Article  PubMed  CAS  Google Scholar 

  • Moller IM, Rasmusson AG, Fredlund KM (1993) NAD(P)H-ubiquinone oxidoreductases in plant mitochondria. J Bioenerg Biomembr 25:377–384

    PubMed  CAS  Google Scholar 

  • Moller K, Olsson L, Piskur J (2001) Ability for anaerobic growth is not sufficient for development of the petite phenotype in Saccharomyces kluyveri. J Bacteriol 183:2485–2489

    Article  PubMed  CAS  Google Scholar 

  • Nagy M, Lacroute F, Thomas D (1992) Divergent evolution of pyrimidine biosynthesis between anaerobic and aerobic yeasts. Proc Natl Acad Sci USA 89:8966–8970

    PubMed  CAS  Google Scholar 

  • Nissen TL, Schulze U, Nielsen J, Villadsen J (1997) Flux distributions in anaerobic, glucose-limited continuous cultures of Saccharomyces cerevisiae. Microbiology 143:203–218

    PubMed  CAS  Google Scholar 

  • Nissen TL, Hamann CW, Kielland-Brandt MC, Nielsen J, Villadsen J (2000) Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis. Yeast 16:463–474

    Article  PubMed  CAS  Google Scholar 

  • Norbeck J, Pahlman AK, Akhtar N, Blomberg A, Adler L (1996) Purification and characterization of two isoenzymes of DL-glycerol-3-phosphatase from Saccharomyces cerevisiae. Identification of the corresponding GPP1 and GPP2 genes and evidence for osmotic regulation of Gpp2p expression by the osmosensing mitogen-activated protein kinase signal transduction pathway. J Biol Chem 271:13875–13881

    PubMed  CAS  Google Scholar 

  • Nosek J, Fukuhara H (1994) NADH dehydrogenase subunit genes in the mitochondrial DNA of yeasts. J Bacteriol 176:5622–5630

    PubMed  CAS  Google Scholar 

  • Nunez de Castro I, Ugarte M, Cano A, Mayor F (1970) Effect of glucose, galactose, and different nitrogen-sources on the activity of yeast glutamate dehydrogenase (NAD and NADP-linked) from normal strain and impaired respiration mutant. Eur J Biochem 16:567–570

    Google Scholar 

  • Overkamp KM, Bakker BM, Kotter P, van Tuijl A, de Vries S, van Dijken JP, Pronk JT (2000) In vivo analysis of the mechanisms for oxidation of cytosolic NADH by Saccharomyces cerevisiae mitochondria. J Bacteriol 182:2823–2830

    Article  PubMed  CAS  Google Scholar 

  • Pahlman AK, Granath K, Ansell R, Hohmann S, Adler L (2001) The yeast glycerol 3-phosphatases Gpp1p and Gpp2p are required for glycerol biosynthesis and differentially involved in the cellular responses to osmotic, anaerobic, and oxidative stress. J Biol Chem 276:3555–3563

    Article  PubMed  CAS  Google Scholar 

  • Petrik M, Kappeli O, Fiechter, A (1983) An expanded concept for the glucose effect in the yeast Saccharomyces uvarum: involvment of short-and long-term regulation. J Gen Microbiol 129:43–49

    CAS  Google Scholar 

  • Pronk JT, Yde Steensma H, van Dijken JP (1996) Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 12:1607–1633

    Article  PubMed  CAS  Google Scholar 

  • Przybyla-Zawislak B, Gadde DM, Ducharme K, McCammon MT (1999) Genetic and biochemical interactions involving tricarboxylic acid cycle (TCA) function using a collection of mutants defective in all TCA cycle genes. Genetics 152:153–166

    PubMed  CAS  Google Scholar 

  • Remize F, Andrieu E, Dequin S (2000) Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae: role of the cytosolic Mg(2+) and mitochondrial K(+) acetaldehyde dehydrogenases Ald6p and Ald4p in acetate formation during alcoholic fermentation. Appl Environ Microbiol 66:3151–3159

    Article  PubMed  CAS  Google Scholar 

  • Richard P (2003) The rhythm of yeast. FEMS Microbiol Rev 27:547–557

    Article  PubMed  CAS  Google Scholar 

  • Rigoulet M, Aguilaniu H, Averet N, Bunoust O, Camougrand N, Grandier-Vazeille X, Larsson C, Pahlman IL, Manon S, Gustafsson L (2004) Organization and regulation of the cytosolic NADH metabolism in the yeast Saccharomyces cerevisiae. Mol Cell Biochem 256/257:73–81

    CAS  Google Scholar 

  • Rodrigues F, Corte-Real M, Leao C, van Dijken JP, Pronk JT (2001) Oxygen requirements of the food spoilage yeast Zygosaccharomyces bailii in synthetic and complex media. Appl Environ Microbiol 63:2123–2128

    Google Scholar 

  • Rustin P, Bourgeron T, Parfait B, Chretien D, Munnich A, Rotig A (1997) Inborn errors of the Krebs cycle: a group of unusual mitochondrial diseases in human. Biochim Biophys Acta 1361:185–197

    PubMed  CAS  Google Scholar 

  • Saint-Prix F, Bonquist L, Dequin S (2004) Functional analysis of the ALD gene family of Saccharomyces cerevisiae during anaerobic growth on glucose: the NADP+-dependent Ald6p and Ald5p isoforms play a major role in acetate formation. Microbiology 150:2209–2220

    Article  PubMed  CAS  Google Scholar 

  • Sass E, Blachinsky E, Karniely S, Pines O (2001) Mitochondrial and cytosolic isoforms of yeast fumarase are derivatives of a single translation product and have identical amino termini. J Biol Chem 276:46111–46117

    Article  PubMed  CAS  Google Scholar 

  • Schagger H, Pfeiffer K (2000) Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J 19:1777–1783

    Article  PubMed  CAS  Google Scholar 

  • Sheffers WA (1966) Stimulation of fermentation by acetoin and oxygen. Nature 210:533–534

    Google Scholar 

  • Shi NQ, Jeffries TW (1998) Anaerobic growth and improved fermentation of Pichia stipitis bearing a URA1 gene from Saccharomyces cerevisiae. Appl Microbiol Biotechnol 50:339–345

    Article  PubMed  CAS  Google Scholar 

  • Small WC, McAlister-Henn L (1998) Identification of a cytosolically directed NADH dehydrogenase in mitochondria of Saccharomyces cerevisiae. J Bacteriol 180:4051–4055

    PubMed  CAS  Google Scholar 

  • Sprague GF, Cronan JE (1977) Isolation and characterization of Saccharomyces cerevisiae mutants defective in glycerol catabolism. J Bacteriol 129:1335–1342

    PubMed  CAS  Google Scholar 

  • Steensma HY (1997) From pyruvate to acetyl-CoA and oxaloacetate. In: Zimmermann FK, Entian KD (eds) Yeast sugar metabolism — biochemistry, genetics, biotechnology, and applications. Technomic, Lancaster, pp 339–357

    Google Scholar 

  • Steffan JS, McAlister-Henn L (1992) Isolation and characterization of the yeast gene encoding the MDH3 isozyme of malate dehydrogenase. J Biol Chem 267:24708–24715

    PubMed  CAS  Google Scholar 

  • Swanson WH, Clifton CE (1948) Growth and assimilation in cultures of Saccharomyces cerevisiae. J Bacteriol 56:115–124

    CAS  Google Scholar 

  • Ter Linde JJ, Liang H, Davis RW, Steensma HY, van Dijken JP, Pronk JT (1999) Genomewide transcriptional analysis of aerobic and anaerobic chemostat cultures of Saccharomyces cerevisiae. J Bacteriol 181:7409–7413

    PubMed  Google Scholar 

  • Tessier WD, Meaden PG, Dickinson FM, Midgley M (1998) Identification and disruption of the gene encoding the K(+)-activated acetaldehyde dehydrogenase of Saccharomyces cerevisiae. FEMS Microbiol Lett 164:29–34

    Article  PubMed  CAS  Google Scholar 

  • Trezeguet V, Zeman I, David C, Lauquin GJM, Kolarov J (1999) Expression of the ADP/ATP carrier encoding genes in aerobic yeasts; phenotype of an ADP/ATP carrier deletion mutant of Schizosaccharomyces pombe. Biochim Biophys Acta 1410:229–236

    PubMed  CAS  Google Scholar 

  • Van den Berg MA, Steensma HY (1995) ACS2, a Saccharomyces cerevisiae gene encoding acetyl-coenzyme A synthetase, essential for growth on glucose. Eur J Biochem 231:704–713

    Article  PubMed  Google Scholar 

  • Van Dijken JP, Scheffers WA (1986) Redox balances in the metabolism of sugars by yeasts. FEMS Microbiol Rev 32:199–224

    Google Scholar 

  • Van Dijken JP, van den Bosch E, Hermans JJ, de Miranda LR, Scheffers WA (1986) Alcoholic fermentation by ‘non-fermentative’ yeasts. Yeast 2:123–127

    PubMed  Google Scholar 

  • Van Urk H, Bruinenberg PM, Veenhuis M, Scheffers WA, Van Dijken JP (1989) Respiratory capacities of mitochondria of Saccharomyces cerevisiae CBS 8066 and Candida utilis CBS 621 grown under glucose limitation. Antonie van Leeuwenhoek 56:211–220

    Article  PubMed  Google Scholar 

  • Vanlerberghe GC, McIntosh L (1997) Alternative oxidase: from gene to function. Annu Rev Plant Physiol Plant Mol Biol 48:703–734

    Article  PubMed  CAS  Google Scholar 

  • Verduyn C (1991) Physiology of yeasts in relation to biomass yields. Antonie van Leeuwenhoek 60:325–353

    Article  PubMed  CAS  Google Scholar 

  • Verduyn C, Postma E, Scheffers WA, van Dijken JP (1990) Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. J Gen Microbiol 59:49–63

    Google Scholar 

  • Verduyn C, Postma E, Scheffers WA, van Dijken JP (1992) Effect of benzoic acid on metabolic fluxes in yeasts: a continuous culture study on the regulation of respiration and alcoholic fermentation. Yeast 8:501–517

    Article  PubMed  CAS  Google Scholar 

  • Visser W, Batenburg-van der Vegte W, Scheffers WA, van Dijken JP (1990) Oxygen requirements of yeasts. Appl Environ Microbiol 56:3785–3792

    PubMed  CAS  Google Scholar 

  • Visser W, van der Baan AA, Batenburg-van der Vegte W, Scheffers WA, Kramer R, van Dijken JP (1994) Involvement of mitochondria in the assimilatory metabolism of anaerobic Saccharomyces cerevisiae cultures. Microbiology 140:3039–3046

    Article  PubMed  CAS  Google Scholar 

  • Von Jagow G, Klingenberg M (1970) Pathways of hydrogen in mitochondria of Saccharomyces carlsbergensis. Eur J Biochem 12:583–592

    Article  Google Scholar 

  • Wang X, Mann CJ, Bai Y, Ni L, Weiner H (1998) Molecular cloning, characterization, and potential roles of cytosolic and mitochondrial aldehyde dehydrogenases in ethanol metabolism in Saccharomyces cerevisiae. J Bacteriol 180:822–830

    PubMed  CAS  Google Scholar 

  • Wijsman MR, van Dijken JP, van Kleeff BH, Scheffers, WA (1984) Inhibition of fermentation and growth in batch cultures of the yeast Brettanomyces intermedius upon a shift from aerobic to anaerobic conditions (Custer effect). Antonie van Leeuwenhoek 50:183–192

    PubMed  CAS  Google Scholar 

  • Wilcox LJ, Balderes DA, Wharton B, Tinkelenberg AH, Rao G, Sturley SL (2002) Transcriptional profiling identifies two members of the ATP-binding cassette transporter superfamily required for sterol uptake in yeast. J Biol Chem 277:32466–32472

    Article  PubMed  CAS  Google Scholar 

  • Yudkoff M, Nelson D, Daikhin Y, Erecinska M (1994) Tricarboxylic acid cycle in rat brain synaptosomes. Fluxes and interactions with aspartate aminotransferase and malate/aspartate shuttle. J Biol Chem 269:27414–27420

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rodrigues, F., Ludovico, P., Leão, C. (2006). Sugar Metabolism in Yeasts: an Overview of Aerobic and Anaerobic Glucose Catabolism. In: Péter, G., Rosa, C. (eds) Biodiversity and Ecophysiology of Yeasts. The Yeast Handbook. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30985-3_6

Download citation

Publish with us

Policies and ethics