Skip to main content

Part of the book series: The Yeast Handbook ((YEASTHDB))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrews JH (1991) Future research directions in phyllosphere ecology. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves. Springer, Berlin Heidelberg New York, pp 467–479

    Google Scholar 

  • Andrews JH (1992) Biological control in the phyllosphere. Annu Rev Phytopathol 30:603–635

    Article  PubMed  CAS  Google Scholar 

  • Andrews JH, Buck JW (2002) Adhesion of yeasts to leaf surfaces. In: Lindow SE, Hecht-Poinar EI, Elliott VJ (eds) Phyllosphere microbiology. APS, St Paul, MN, pp 53–65

    Google Scholar 

  • Andrews JH, Harris RF (2000) The ecology and biogeography of microorganisms on plant surfaces. Annu Rev Phytopathol 38:145–180

    Article  PubMed  Google Scholar 

  • Andrews JH, Kenerley CM (1978) The effects of a pesticide program on non-target epiphytic microbial populations of apple leaves. Can J Microbiol 24:1058–1072

    Article  PubMed  CAS  Google Scholar 

  • Andrews JH, Kenerley CM (1980) Microbial populations associated with buds and young leaves of apple. Can J Bot 58:847–855

    Google Scholar 

  • Andrews JH, Kenerley CM, Nordheim EV (1980) Positional variation in phylloplane populations within an apple tree canopy. Microb Ecol 6:71–84

    Article  Google Scholar 

  • Andrews JH, Kinkel LL, Berbee FM, Nordheim EV (1987) Fungi, leaves, and the theory of island biogeography. Microb Ecol 14:277–290

    Article  Google Scholar 

  • Andrews JH, Harris RF, Spear RN, Lau GW, Nordheim EV (1994) Morphogenesis and adhesion of Aureobasidium pullulans. Can J Microbiol 40:6–17

    Article  CAS  Google Scholar 

  • Andrews JH, Spear RN, Nordheim EV (2002) Population biology of Aureobasidium pullulans on apple leaf surfaces. Can J Microbiol 48:500–513

    Article  PubMed  CAS  Google Scholar 

  • Avis TJ, Bélanger RR (2002) Mechanisms and means of detection of biocontrol activity of Pseudozyma yeasts against plant-pathogenic fungi. FEMS Yeast Res 2:5–8

    PubMed  CAS  Google Scholar 

  • Azeredo LAI, Gomes EAT, Mendonça-Hagler LC, Hagler AN (1998) Yeast communities associated with sugarcane in Campos, Rio de Janeiro, Brasil. Int Microbiol 1:205–208

    PubMed  Google Scholar 

  • Babjeva IP, Chernov IY (1995) Geographic aspects of yeast ecology. Physiol Gen Biol Rev 9(3):1–54

    Google Scholar 

  • Babjeva IP, Reshetova I (1998) Yeast resources in natural habitats at polar circle latitude. Food Technol Biotechnol 36:1–5

    Google Scholar 

  • Babjeva IP, Sadykov BF (1980) Composition and number of yeasts in plant phyllosphere (in Russian). Mikol Phytopatol 14:473–476

    Google Scholar 

  • Babjeva IP, Kartintseva AA, Maksimova IA, Chernov IY (1999) Yeasts in the spruce forests of the Central Forest Reserve (in Russian). Vestn Mosk Univ Ser Pochvoved 4:45–49

    Google Scholar 

  • Bai FY, Zhao JH, Takashima M, Jia JH, Boekhout T, Nakase T (2002) Reclassification of the Sporobolomyces roseus and the Sporidiobolus pararoseus complexes, with the description of Sporobolomyces phaffii sp. nov. Int J Syst Evol Microbiol 52:2309–2314

    PubMed  CAS  Google Scholar 

  • Baker EA (1971) Chemical and physical characteristics of cuticular membranes. In: Preece TF, Dickinson CH (eds) Ecology of leaf surface micro-organisms. Academic, London, pp 55–65

    Google Scholar 

  • Bakker GR, Frampton CM, Jaspers MV, Stewart A, Walter M (2002) Assessment of phylloplane micro-organism populations in Canterbury apple orchards. NZ Plant Prot 55:129–134

    Google Scholar 

  • Bashi E, Fokkema NJ (1976) Scanning electron microscopy of Sporobolomyces roseus on wheat leaves. Trans Br Mycol Soc 67:500–505

    Google Scholar 

  • Bashi E, Fokkema NJ (1977) Environmental factors limiting growth of Sporobolomyces roseus, an antagonist of Cochliobolus sativus, on wheat leaves. Trans Br Mycol Soc 68:17–25

    Google Scholar 

  • Beech FW, Davenport RR (1970) The role of yeasts in cider-making. In: Rose AH, Harrison JS (eds) The yeasts, vol 3. Academic, New York, pp 73–141

    Google Scholar 

  • Beech FW, Davenport RR (1971) A survey of methods for the quantitative examination of the yeast flora of apple and grape leaves. In: Preece TF, Dickinson CH (eds) Ecology of leaf surface micro-organisms. Academic, London, pp 139–157

    Google Scholar 

  • Bizeau C, Ponchant D, Moreau M (1989) Evolution of yeast flora on cider apples in Brittany. Yeast 5:S491–S494

    Google Scholar 

  • Blakeman JP (1971) The chemical environment of the leaf surface in relation to growth of pathogenic fungi. In: Preece TF, Dickinson CH (eds) Ecology of leaf surface micro-organisms. Academic, London, pp 255–268

    Google Scholar 

  • Bramwell PA, Barallon RV, Rogers HJ, Bailey MJ (1995) Extraction of microbial DNA from the phylloplane. In: Akkermans ADL, van Elsas JD, de Bruijin FJ (eds) Molecular microbial ecology manual. Kluwer, Dordrecht, The Netherlands, pp 1–21

    Google Scholar 

  • Breeze EM, Dix NJ (1981) Seasonal analysis of the fungal community on Acer platanoides leaves. Trans Br Mycol Soc 77:321–328

    Google Scholar 

  • Buck JW, Andrews JH (1999a) Localized, positive charge mediates adhesion of Rhodosporidium toruloides to barley leaves and polystyrene. Appl Environ Microbiol 65:2179–2183

    PubMed  CAS  Google Scholar 

  • Buck JW, Andrews JH (1999b) Role of adhesion in the colonization of barley leaves by the yeast Rhodosporidium toruloides. Can J Microbiol 45:433–440

    Article  CAS  Google Scholar 

  • Buck JW, Burpee LL (2002) The effects of fungicides on the phylloplane yeast populations of creeping bentgrass. Can J Microbiol 48:522–529

    Article  PubMed  CAS  Google Scholar 

  • Buck JW, Lachance MA, Traquair JA (1998) Mycoflora of peach bark: population dynamics and composition. Can J Bot 76:345–354

    Article  Google Scholar 

  • Carmo-Sousa L (1969) Distribution of yeasts in nature. In: Rose AH, Harrison JS (eds) The yeasts, vol 1. Academic, New York, pp 79–105

    Google Scholar 

  • Chand-Goyal T, Spotts RA (1996) Enumeration of bacterial and yeast colonists of apple fruits and identification of epiphytic yeasts on pear fruits in the Pacific Northwest United States. Microbiol Res 151:427–432

    PubMed  CAS  Google Scholar 

  • Chernov IY (1985) Synecology analysis of yeast groups of Taimyr Tundra (in Russian). Ekologiya 1:54–60

    Google Scholar 

  • Chernov IY, Babjeva IP, Reshetova IS (1997) Synecology of yeast fungi in subtropical deserts (in Russian). Usp Sovrem Biol 117:584–602

    Google Scholar 

  • De Jager ES, Wehner FC, Korsten L (2001) Microbial ecology of the mango phylloplane. Microb Ecol 42:201–207

    PubMed  Google Scholar 

  • Di Menna ME (1959) Yeasts from the leaves of pasture plants. NZ J Agric Res 2:394–405

    Google Scholar 

  • Di Menna ME (1971) The mycoflora of leaves of pasture plants in New Zealand. In: Preece TF, Dickinson CH (eds) Ecology of leaf surface microorganisms. Academic, London, pp 159–174

    Google Scholar 

  • Diem HG (1973) Phylloplan et phyllosphère. Can J Bot 51:1079–1080

    Article  Google Scholar 

  • Diem HG (1974) Micro-organisms of the leaf surface: estimation of the mycoflora of the barley phyllosphere. J Gen Microbiol 80:77–83

    Google Scholar 

  • Dik AJ, Fokkema NJ, van Pelt JA (1991) Consumption of aphid honeydew, a wheat yield reduction factor, by phyllosphere yeasts under field conditions. Nether J Plant Pathol 97:209–232

    Google Scholar 

  • Drahos DJ (1991) Methods for the detection, identification, and enumeration of microbes. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves. Springer, Berlin Heidelberg New York, pp 135–157

    Google Scholar 

  • Fell JW, Boekhout T, Fonseca A, Scorzetti G, Statzell-Tallman A (2000) Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. Int J Syst Evol Microbiol 50:1351–1371

    PubMed  CAS  Google Scholar 

  • Fell JW, Boekhout T, Fonseca A, Sampaio JP (2001) Basidiomycetous yeasts. In: McLaughlin DJ, McLaughlin EG, Lemke PA (eds) The mycota, vol VII, part B: systematics and evolution. Springer, Berlin Heidelberg New York, pp 1–35

    Google Scholar 

  • Fell JW, Scorzetti G, Statzell-Tallman A, Pinel N, Yarrow D (2002) Recognition of the basidiomycetous yeast Sporobolomyces ruberrimus sp. nov. as a distinct species based on molecular and morphological analyses. FEMS Yeast Res 1:265–270

    PubMed  CAS  Google Scholar 

  • Flannigan B, Campbell I (1977) Preharvest mould and yeast floras on the flag leaf, bracts and caryopsis of wheat. Trans Br Mycol Soc 69:485–494

    Google Scholar 

  • Fokkema NJ (1991) The phyllosphere as an ecologicaly neglected milieu: a plant pathologist’s point of view. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves. Springer, Berlin Heidelberg New York, pp 3–18

    Google Scholar 

  • Fokkema NJ, Schippers B (1986) Phyllosphere versus rhizosphere as environments for saprophytic colonization. In: Fokkema NJ, van den Heuvel J (eds) Microbiology of the phyllosphere. Cambridge University Press, London, pp 137–159

    Google Scholar 

  • Fokkema NJ, den Houter JG, Kosterman YJC, Nelis AL (1979) Manipulation of yeasts on field-grown wheat leaves and their antagonistic effect on Cochliobolus sativus and Septoria nodorum. Trans Br Mycol Soc 72:19–29

    Google Scholar 

  • Fokkema NJ, Riphagen I, Poot RJ, de Jong C (1983) Aphid honeydew, a potential stimulant of Cochliobolus sativus and Septoria nodorum and the competitive role of saprophytic mycoflora. Trans Br Mycol Soc 81:355–363

    Google Scholar 

  • Fonseca A, Scorzetti G, Fell JW (2000) Diversity in the yeast Cryptococcus albidus and related species as revealed by ribosomal DNA sequence analysis. Can J Microbiol 46:7–27

    Article  PubMed  CAS  Google Scholar 

  • Glushakova AM, Chernov IY (2004) Seasonal dynamics in a yeast population on leaves of the common wood sorrel Oxalis acetosella L. Mikrobiologiya 73:226–232 (English translation: Microbiology 73:184–188)

    CAS  Google Scholar 

  • Golonka AM (2002) Nectar-inhabiting microorganisms and the dioecious plant species Silene latifolia. PhD thesis, Duke University, USA

    Google Scholar 

  • Golubev WI (1991) Capsules. In: Rose AH, Harrison JS (eds) The yeasts, 2nd edn, vol 4. Academic, London, pp 175–197

    Google Scholar 

  • Gunasekera TS, Paul ND, Ayres PG (1997) Responses of phylloplane yeasts to UV-B (290–320 nm) radiation: interspecific differences in sensitivity. Mycol Res 101:779–785

    Article  CAS  Google Scholar 

  • Hallam ND, Juniper BE (1971) The anatomy of the leaf surface. In: Preece TF, Dickinson CH (eds) Ecology of leaf surface micro-organisms. Academic, London, pp 14–37

    Google Scholar 

  • Herzberg MB (2004) Ecology of yeasts in plant-bumblebee mutualism in Central Europe. FEMS Microbiol Ecol 50:87–100

    Google Scholar 

  • Hirano SS, Upper CD (2000) Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae — a pathogen, ice nucleus, and epiphyte. Microbiol Mol Biol Rev 64:624–653

    PubMed  CAS  Google Scholar 

  • Hislop EC, Cox TW (1969) Effects of captan on the non-parasitic microflora of apple leaves. Trans Br Mycol Soc 52:223–235

    Google Scholar 

  • Hogg BM, Hudson HJ (1966) Micro-fungi on leaves of Fagus sylvatica I. The micro-fungal succession. Trans Br Mycol Soc 49:185–192

    Google Scholar 

  • Hunter K, Rose AH (1971) Yeast lipids and membranes. In: Rose AH, Harrison JS (eds) The yeasts, vol 1. Academic, London, pp 211–270

    Google Scholar 

  • Inácio J (2003) Yeast occurrence and diversity on the phylloplane of selected plants from the Arrábida Natural Park. PhD thesis (in Portuguese). Universidade Nova de Lisboa, Portugal

    Google Scholar 

  • Inácio J, Pereira P, de Carvalho M, Fonseca A, Amaral-Collaço MT, Spencer-Martins I (2002) Estimation and diversity of phylloplane mycobiota on selected plants in a Mediterraneantype ecosystem in Portugal. Microb Ecol 44:344–353

    PubMed  Google Scholar 

  • Inácio J, Rodrigues MG, Sobral P, Fonseca A (2004) Characterisation and classification of phylloplane yeasts from Portugal related to the genus Taphrina and description of five novel Lalaria species. FEMS Yeast Res 4:541–555

    PubMed  Google Scholar 

  • Irvine JA, Dix NJ, Warren RC (1978) Inhibitory substances in Acer platanoides leaves: seasonal activity and effects on growth of phylloplane fungi. Trans Br Mycol Soc 70:363–371

    CAS  Google Scholar 

  • Jacques M-A, Morris CE (1995) A review of issues related to the quantification of bacteria from the phyllosphere. FEMS Microbiol Ecol 18:1–14

    CAS  Google Scholar 

  • Jacques M-A, Kinkel LL, Morris CE (1995) Population sizes, immigration, and growth of epiphytic bacteria on leaves of different ages and positions of field-grown endive (Cichorium endivia var. latifolia). Appl Environ Microbiol 61:899–906

    CAS  PubMed  Google Scholar 

  • Kimura Y, Nakano Y, Fujita K, Miyabe S, Imasaka S, Ishikawa Y, Sato M (1998) Isolation and characteristics of yeasts able to grow at low concentrations of nutrients. Yeast 14:233–238

    Article  PubMed  CAS  Google Scholar 

  • Kinkel L (1991) Fungal community dynamics. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves. Springer, Berlin Heidelberg New York, pp 253–270

    Google Scholar 

  • Kinkel LL (1997) Microbial population dynamics on leaves. Annu Rev Phytopathol 35:327–347

    Article  PubMed  CAS  Google Scholar 

  • Kinkel LL, Andrews JH, Nordheim EV (1989) Fungal immigration dynamics and community development on apple leaves. Microb Ecol 18:45–58

    Google Scholar 

  • Kramer CL (1987) The Taphrinales. In: Hoog GS, Smith ACM, Weijman ACM (eds) The expanding realm of yeast-like fungi. Elsevier, Amsterdam, pp 151–166

    Google Scholar 

  • Kurtzman CP, Fell JW (eds) (1998) The yeasts, a taxonomic study, 4th edn. Elsevier, Amsterdam

    Google Scholar 

  • Kurtzman CP, Robnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek 73:331–371

    Article  PubMed  CAS  Google Scholar 

  • Kvasnikov EI, Nagornaya SS, Shchelokova IF (1975) Yeast flora of plant rhizosphere and phyllosphere (in Russian). Mikrobiologiya 44:339–346

    CAS  Google Scholar 

  • Lachance MA, Metcalf BJ, Starmer WT (1982) Yeasts from exudates of Quercus, Populus, Pseudotsuga, and Ulmus: new isolations and elucidation of some factors affecting ecological specificity. Microb Ecol 8:191–198

    Article  Google Scholar 

  • Lachance MA, Starmer WT, Rosa CA, Bowles JM, Barker JSF, Janzen DH (2001) Biogeography of the yeasts of ephemeral flowers and their insects. FEMS Yeast Res 1:1–8

    PubMed  CAS  Google Scholar 

  • Larran S, Mónaco C, Alippi HE (2001) Endophytic fungi in leaves of Lycopersicon esculentum Mill. World J Microbiol Biotech 17:181–184

    Google Scholar 

  • Last FT (1955) Seasonal incidence of Sporobolomyces on cereal leaves. Trans Br Mycol Soc 38:221–239

    Google Scholar 

  • Last FT, Price D (1969) Yeasts associated with living plants and their environs. In: Rose AH, Harrison JS (eds) The yeasts, 1st edn, vol 1. Academic, New York, pp 183–217

    Google Scholar 

  • Leben C (1965) Epiphytic microorganisms in relation to plant disease. Annu Rev Phytopathol 3:209–230

    Article  Google Scholar 

  • Leveau JHJ, Lindow SE (2001) Appetite of an epiphyte: quantitative monitoring of bacterial sugar consumption in the phyllosphere. Proc Natl Acad Sci USA 98:3446–3453

    Article  PubMed  CAS  Google Scholar 

  • Li S, Spear RN, Andrews JH (1997) Quantitative fluorescence in situ hybridization of Aureobasidium pullulans on microscopic slides and leaf surfaces. Appl Environ Microbiol 63:3261–3267

    PubMed  CAS  Google Scholar 

  • Libkind D, Perez P, Sommaruga R, Dieguez-Mdel C, Ferraro M, Brizzio S, Zagarese H, van Broock M (2004) Constitutive and UV-inducible synthesis of photoprotective compounds (carotenoids and mycosporines) by freshwater yeasts. Photochem Photobiol Sci 3:281–286

    Article  PubMed  CAS  Google Scholar 

  • Lindow SE (1991) Determinants of ephiphytic fitness in bacteria. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves. Springer, Berlin Heidelberg New York, pp 295–314

    Google Scholar 

  • Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883

    Article  PubMed  CAS  Google Scholar 

  • Lindow SE, Leveau JHJ (2002) Phyllosphere microbiology. Curr Opin Biotechnol 13:238–243

    Article  PubMed  CAS  Google Scholar 

  • Lindsey BI, Pugh GJF (1976) Distribution of microfungi over the surfaces of attached leaves of Hippophae rhamnoides. Trans Br Mycol Soc 67:427–433

    Google Scholar 

  • Lund A (1954) Studies on the ecology of yeasts. Munksgaard, Copenhagen

    Google Scholar 

  • Maksimova IA, Chernov IY (2004) Community structure of yeast fungi in forest biogeocenoses. Mikrobiologiya 73:558–566 (English translation: Microbiology 73:474–481)

    CAS  Google Scholar 

  • McBride RP, Hayes AJ (1977) Phylloplane of European larch. Trans Br Mycol Soc 69:39–46

    Google Scholar 

  • McCormack PJ, Bailey MJ, Jeffries P (1994a) An artificial wax substrate for the in vitro study of phylloplane microorganisms. J Microbiol Methods 19:19–28

    Article  CAS  Google Scholar 

  • McCormack PJ, Wildman HG, Jeffries P (1994b) Production of antibacterial compounds by phylloplane inhabiting yeasts and yeast like fungi. Appl Environ Microbiol 60:927–931

    PubMed  CAS  Google Scholar 

  • Mercier J, Lindow SE (2000) Role of leaf surface sugars in colonization of plants by bacterial epiphytes. Appl Environ Microbiol 66:369–374

    Article  PubMed  CAS  Google Scholar 

  • Middelhoven WJ (1997) Identity and biodegradative abilities of yeast isolated from plants growing in an arid climate. Antonie van Leeuwenhoek 72:81–89

    Article  PubMed  CAS  Google Scholar 

  • Mishra RR, Dickinson CH (1981) Phylloplane and litter fungi of Ilex aquifolium. Trans Br Mycol Soc 77:329–337

    Article  Google Scholar 

  • Moody SA, Newsham KK, Ayres PG, Paul ND (1999) Variation in the responses of litter and phylloplane fungi to UV-B radiation (290–315 nm). Mycol Res 103:1469–1477

    Article  Google Scholar 

  • Morris CE (2001) Phyllosphere. In: Encyclopedia of life sciences. Nature Publishing Group, London. DOI 10.1038/npg.els.0000400

    Google Scholar 

  • Morris CE, Monier J-M, Jacques M-A (1997) Methods for observing microbial biofilms directly on leaf surfaces and recovering them for isolation of culturable microorganisms. Appl Environ Microbiol 63:1570–1576

    CAS  PubMed  Google Scholar 

  • Moter A, Göbel UB (2000) Fluorescence in situ hybridisation (FISH) for direct visualization of microorganisms. J Microbiol Methods 41:85–112

    Article  PubMed  CAS  Google Scholar 

  • Nakase T (2000) Expanding world of ballistosporous yeasts: distribution in the phyllosphere, systematics and phylogeny. J Gen Appl Microbiol 46:189–216

    Article  PubMed  Google Scholar 

  • Nakase T, Takashima M (1993) A simple procedure for the high frequency isolation of new taxa of ballistosporous yeasts living on the surfaces of plants. RIKEN Rev 3:33–34

    Google Scholar 

  • Osono T (2002) Phyllosphere fungi on leaf litter of Fagus crenata: occurrence, colonization, and succession. Can J Bot 80:460–469

    Article  Google Scholar 

  • Pennycook SR, Newhook FJ (1981) Seasonal changes in the apple phylloplane microflora. NZ J Bot 19:273–283

    Google Scholar 

  • Phaff HJ, Starmer WT (1987) Yeasts associated with plants, insects and soil. In: Rose AH, Harrison JS (eds) The yeasts, biology of yeasts, 2nd edn, vol 1. Academic, London, pp 123–180

    Google Scholar 

  • Phaff HJ, Miller MW, Mrak EM (1978) The life of yeasts, 2nd edn. Harvard University Press, Cambridge, Massachusetts

    Google Scholar 

  • Pirttilä AM, Pospiech H, Laukkanen H, Myllylä R, Hohtola A (2003) Two endophytic fungi in different tissues of scots pine buds (Pinus sylvestris L.). Microb Ecol 45:53–62

    PubMed  Google Scholar 

  • Prakitchaiwattana CJ, Fleet GH, Heard GM (2004) Application and evaluation of denaturing gradient gel electrophoresis to analyse the yeast ecology of wine grapes. FEMS Yeast Res 4:865–877

    PubMed  CAS  Google Scholar 

  • Preece TF, Dickinson CH (eds) (1971) Ecology of leaf surface micro-organisms. Academic, London

    Google Scholar 

  • Pugh GJF, Buckley (1971) The leaf surface as a substrate for colonization by fungi. In: Preece TF, Dickinson CH (eds) Ecology of leaf surface micro-organisms. Academic, London, pp 431–445

    Google Scholar 

  • Pugh GJF, Mulder JL (1971) Mycoflora associated with Typha latifolia. Trans Br Mycol Soc 57:273–282

    Google Scholar 

  • Robbs PG, Hagler AN, Mendonça-Hagler LC (1989) Yeasts associated with a pineapple plantation in Rio de Janeiro, Brasil. Yeast 5:S485–S489

    Google Scholar 

  • Ruinen J (1956) Occurrence of Beijerinckia species in the phyllosphere. Nature 177:220–221

    Google Scholar 

  • Ruinen J (1961) The phyllosphere I: an ecologically neglected milieu. Plant Soil 15:81–109

    Article  Google Scholar 

  • Ruinen J (1963) The phyllosphere II: yeasts from the phyllosphere of tropical foliage. Antonie van Leeuwenhoek 29:425–438

    Article  PubMed  CAS  Google Scholar 

  • Ruinen J (1966) The phyllosphere IV: cuticle decomposition by microorganisms in the phyllosphere. Ann Inst Pasteur 111:342–346

    Google Scholar 

  • Sampaio JP (2004) Diversity, phylogeny and classification of basidiomycetous yeasts. In: Agerer R, Blanz P, Piepenbring M (eds) Frontiers in basidiomycete mycology. IHW-Verlag, Eching, Germany, pp 49–80

    Google Scholar 

  • Scorzetti G, Fell JW, Fonseca A, Statzell-Tallman A (2002) Systematics of basidiomycetous yeasts: a comparison of large subunit D1/D2 and internal transcribed spacer rDNA regions. FEMS Yeast Res 2:495–517

    PubMed  CAS  Google Scholar 

  • Southwell RJ, Brown JF, Welsby SM (1999) Microbial interactions on the phylloplane of wheat and barley after application of mancozeb and triadimefon. Austr Plant Pathol 28:139–148

    Google Scholar 

  • Spear RN, Li S, Nordheim EV, Andrews JH (1999) Quantitative imaging and statistical analysis of fluorescence in situ hybridization (FISH) of Aureobasidium pullulans. J Microbiol Meth 35:101–110

    Article  CAS  Google Scholar 

  • Stadler B, Müller T (1996) Aphid honeydew and its effect on the phyllosphere microflora of Picea abies (L.) Karst. Oecologia 108:771–776

    Article  Google Scholar 

  • Starmer WT, Fogleman JC, Lachance MA (1991) The yeast community of cacti. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves. Springer, Berlin Heidelberg New York, pp 158–178

    Google Scholar 

  • Starmer WT, Schmedicke RA, Lachance MA (2003) The origin of the cactus-yeast community. FEMS Yeast Res 3:441–448

    PubMed  CAS  Google Scholar 

  • St Leger RJ, Joshi L, Roberts DW (1997) Adaptation of proteases and carbohydrases of saprophytic, phytopathogenic and entomopathogenic fungi to the requirements of their ecological niches. Microbiology 143:1983–1992

    PubMed  CAS  Google Scholar 

  • Sugita T, Takashima M, Ikeda R, Nakase T, Shinoda T (2000) Intraspecies diversity of Cryptococcus laurentii as revealed by sequences of internal transcribed spacer regions and 28S rRNA gene and taxonomic position of C. laurentii clinical isolates. J Clin Microbiol 38:1468–1471

    PubMed  CAS  Google Scholar 

  • Sugita T, Takashima M, Ikeda R, Nakase T, Shinoda T (2001) Intraspecies diversity of Cryptococcus albidus isolated from humans as revealed by sequences of the internal transcribed spacer regions. Microbiol Immunol 45:291–297

    PubMed  CAS  Google Scholar 

  • Takashima M, Sugita T, Shinoda T, Nakase T (2003) Three new combinations from the Cryptococcus laurentii complex: Cryptococcus aureus, Cryptococcus carnescens and Cryptococcus peneaus. Int J Syst Evol Microbiol 53:1187–1194

    Article  PubMed  CAS  Google Scholar 

  • Tavares S, Inácio J, Fonseca A, Oliveira C (2004) Direct detection of Taphrina deformans on peach trees using molecular methods. Eur J Plant Path 110:973–982

    CAS  Google Scholar 

  • Thompson IP, Bailey MJ, Ellis RJ, Lilley AK, McCormack PJ, Purdy KJ, Rainey PB (1995) Short-term community dynamics in the phyllosphere microbiology of field-grown sugar beet. FEMS Microbiol Ecol 16:205–212

    CAS  Google Scholar 

  • Tukey HB Jr (1971) Leaching of substances from plants. In: Preece TH, Dickinson CH (eds) Ecology of leaf surface micro-organisms. Academic, London, pp 6780

    Google Scholar 

  • Vishniac HS (1982) An enation system for the isolation of Antarctic yeasts inhibited by conventional media. Can J Microbiol 29:90–95

    Google Scholar 

  • Vinovarova ME, Babjeva IP (1987) Yeast fungi in steppe communities (in Russian). Vestn Mosk Univ Ser Pochvoved 2:43–48

    Google Scholar 

  • Windels CE, Lindow SE (eds) (1985) Biological control on the phylloplane. APS, St Paul, MN

    Google Scholar 

  • Woody ST, Spear RN, Nordheim EV, Ives AR, Andrews JH (2003) Single-leaf resolution of the temporal population dynamics of Aureobasidium pullulans on apple leaves. Appl Environ Microbiol 69:4892–4900

    Article  PubMed  CAS  Google Scholar 

  • Yang CH, Crowley DE, Borneman J, Keen NT (2001) Microbial phyllosphere populations are more complex than previously realized. Proc Natl Acad Sci USA 98:3889–3894

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fonseca, Á., Inácio, J. (2006). Phylloplane Yeasts. In: Péter, G., Rosa, C. (eds) Biodiversity and Ecophysiology of Yeasts. The Yeast Handbook. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30985-3_13

Download citation

Publish with us

Policies and ethics