Skip to main content

Antagonistic Interactions Among Yeasts

  • Chapter

Part of the book series: The Yeast Handbook ((YEASTHDB))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abranches J, Vital MJS, Starmer WT, Mendonca-Hagler LC, Hagler AN (2000) The yeast community and mycocin producers of guava fruit in Rio de Janeiro, Brazil. Mycologia 92:16–22

    Google Scholar 

  • Aguiar C, Lucas C (2000) Yeast killer/sensitive phenotypes and halotolerance. Food Technol Biotechnol 38:39–46

    CAS  Google Scholar 

  • Ahmed A, Sesti F, Ilan N, Shih TM, Sturley SL, Goldstein SAN (1999) A molecular target for viral killer toxin: TOK1 potassium channels. Cell 99:283–291

    Article  PubMed  CAS  Google Scholar 

  • Al-Aidroos K, Bussey H (1978) Chromosomal mutants of Saccharomyces cerevisiae affecting the cell wall binding sites for killer factor. Can J Microbiol 24:228–237

    PubMed  CAS  Google Scholar 

  • Ashida S, Shimazaki T, Kitano K, Hara S (1983) New killer toxin of Hansenula mrakii. Agric Biol Chem 47:2953–2955

    CAS  Google Scholar 

  • Avis TJ, Bélanger RR (2002) Mechanisms and means of detection of biocontrol activity of Pseudozyma yeasts against plant-pathogenic fungi. FEMS Yeast Res 2:5–8

    PubMed  CAS  Google Scholar 

  • Boekhout T, Scorzetti G (1997) Differential killer toxin sensitivity patterns of varieties of Cryptococcus neoformans. Med Veter Mycol 35:147–149

    CAS  Google Scholar 

  • Bolen PL, Eastman EM, Cihak PL, Hayman GT (1994) Isolation and sequence analysis of a gene from the linear DNA plasmid pPac1–2 of Pichia acaciae that shows similarity to a killer toxin gene of Kluyveromyces lactis. Yeast 10:403–414

    Article  PubMed  CAS  Google Scholar 

  • Bonilla-Salinas M, Lappe P, Ulloa M, Garcia-Garibay M, Gomez-Ruiz L (1995) Isolation and identification of killer yeasts from sugar cane molasses. Lett Appl Microbiol 21:115–116

    Google Scholar 

  • Boone C, Bussey H, Greene D, Thomas DY, Vernet T (1986) Yeast killer toxin: site-directed mutations implicate the precursor protein as immunity component. Cell 46:105–113

    Article  PubMed  CAS  Google Scholar 

  • Bussey H, Saville D, Hutchins K, Palfree RGE (1979) Binding of yeast killer toxin to a cell wall receptor on sensitive Saccharomyces cerevisiae. J Bacteriol 140:888–892

    PubMed  CAS  Google Scholar 

  • Bussey H, Sacks W, Galley D, Saville D (1982) Yeast killer plasmid mutations affecting toxin secretion and activity and toxin immunity function. Mol Cell Biol 2:346–354

    PubMed  CAS  Google Scholar 

  • Butler AR, White JH, Stark MJR (1991) Analysis of the response of Saccharomyces cerevisiae cells to Kluyveromyces lactis toxin. J Gen Microbiol 137:1749–1757

    PubMed  CAS  Google Scholar 

  • Buzzini P, Martini A (2000a) Differential growth inhibition as a tool to increase the discriminating power of killer toxin sensitivity in fingerprinting of yeasts. FEMS Microbiol Lett 193:31–36

    Article  PubMed  CAS  Google Scholar 

  • Buzzini P, Martini A (2000b) Biodiversity of killer activity in yeasts isolated from the Brasil rain forest. Can J Microbiol 46:607–611

    Article  PubMed  CAS  Google Scholar 

  • Buzzini P., Vaughan-Martini A, Martini A (2001) Fingerprinting of yeast cultures of industrial interest by yeast killer system. Agro-Industry Hi-Tech 11:20–22

    Google Scholar 

  • Caprilli F, Prignano G, Latella C, Tavarozzi S (1985) Amplification of the killer system for differentiation of Candida albicans strains. Mykosen 28:569–573

    PubMed  CAS  Google Scholar 

  • Carreiro SC, Pagnocca FC, Bacci M, Bueno OC, Hebling MJA, Middelhoven WJ (2002) Occurrence of killer yeasts in leaf-cutting ant nests. Folia Microbiol 47:259–262

    CAS  Google Scholar 

  • Chen WB, Han YF, Jong SC, Chang SC (2000) Isolation, purification, and characterization of a killer protein from Schwanniomyces occidentalis. Appl Environ Microbiol 66:5348–5352

    PubMed  CAS  Google Scholar 

  • Cheng Y, McNally DJ, Labbe C, Voyer N, Belzile F, Bélanger RR (2003) Insertional mutagenesis of a fungal biocontrol agent led to discovery of a rare cellobiose lipid with antifungal activity. Appl Environ Microbiol 69:2595–2602

    Article  PubMed  CAS  Google Scholar 

  • Choi EH, Chang HC, Chung EY (1990) Isolation and identification of wild killer yeast Candida dattila. Sanop Misaenqmul Hakhoechi 18:1–5

    CAS  Google Scholar 

  • Comitini F, di Pietro N, Zacchi L, Ciani M (2004) Kluyveromyces phaffii killer toxin active against wine spoilage yeasts: purification and characterization. Microbiology 150:2535–2541

    Article  PubMed  CAS  Google Scholar 

  • De la Pena P, Barros F, Gascon S, Lazo PS, Ramos S (1981) The effect of yeast killer toxin on sensitive cells of Saccharomyces cerevisiae. J Biol Chem 256:10420–10425

    PubMed  Google Scholar 

  • Douglas CM, Sturley SL, Bostian KA (1988) Role of protein processing, intracellular trafficking and endocytosis in production and immunity to yeast killer toxin. Eur J Epidemiol 4:400–408

    Article  PubMed  CAS  Google Scholar 

  • Fleet GH (1991) Cell walls. In: Rose AH, Harrison JS (eds) The Yeasts, vol 4. Yeast organelles. Academic, London, pp 199–277

    Google Scholar 

  • Gacser A, Hamari Z, Pfeiffer I, Varga J, Kevei F, Kucsera J (2001) Genetic diversity in the red yeast Cryptococcus hungaricus and its phylogenetic relationship to some related basidiomycetous yeasts. FEMS Yeast Res 1:213–220

    Article  PubMed  CAS  Google Scholar 

  • Ganter PF, Starmer WT (1992) Killer factor as a mechanism of interference competition in yeasts associated with cacti. Ecology 73:54–67

    Google Scholar 

  • Ghabrial SA (1994) New developments in fungal virology. Adv Virus Res 43:303–388

    PubMed  CAS  Google Scholar 

  • Golubev WI (1989) Action spectrum of Rhodotorula glutinis mycocins and its taxonomic implications. Mikrobiologiya 58:99–103

    CAS  Google Scholar 

  • Golubev WI (1991a) Taxonomic evaluation of mycocins produced by the basidiomycetous yeast Cryptococcus podzolicus. Mikrobiologiya 60:115–121

    Google Scholar 

  • Golubev WI (1991b) Taxonomic evaluation of fungistatic mycocins produced by yeasts of Rhodotorula minuta complex. Mykol i Phytopathol 25:482–486

    Google Scholar 

  • Golubev WI (1992a) Antibiotic activity and taxonomic position of Rhodotorula fujisanensis (Soneda) Johnson et Phaff. Mikrobiol Zhurnal (Kiev) 54:21–26

    Google Scholar 

  • Golubev WI (1992b) Killer activity in Cryptococcus humicola. Abstracts of the VIIIth international symposium on yeasts (Atlanta, 23–28 Aug 1992), p 178

    Google Scholar 

  • Golubev WI (1998a) Mycocins (killer toxins). In: Kurtzman CP, Fell JW (eds) The Yeasts, a taxonomic study. Elsevier, Amsterdam, pp 55–62

    Google Scholar 

  • Golubev WI (1998b) Killer activity of Tilletiopsis albescens Gokhale: taxonomic and phylogenetic implication. System Appl Microbiol 21:429–432

    CAS  Google Scholar 

  • Golubev WI, Blagodatskaya VM (1993) Taxonomic heterogeneity of Pichia membranifaciens Hansen revealed by killer-sensitive reactions. Mikrobiologiya 62:291–299

    CAS  Google Scholar 

  • Golubev WI, Blagodatskaya VM (1994) Intra-and intergeneric killing patterns of Pichia punctispora (Melard 1910) Dekker 1931 mycocins. Mikrobiologiya 63:637–642

    CAS  Google Scholar 

  • Golubev WI, Boekhout T (1992) Dimorphism in Itersonilia perplexans: differences between yeast and hyphal forms in sensitivity to mycocins produced by tremellaceous yeasts. FEMS Microbiol Lett 98:187–190

    Article  CAS  Google Scholar 

  • Golubev WI, Boekhout T (1995) Sensitivity to killer toxins as a taxonomic tool among heterobasidiomycetous yeasts. Studies Mycol N 38:47–58

    Google Scholar 

  • Golubev WI, Churkina LG (1990) High incidence of killer strains in the yeast Rhodotorula mucilaginosa (Jorgensen) Harrison. Izv Akad Nauk SSSR (Ser Biol) N6:854–861

    Google Scholar 

  • Golubev WI, Churkina LG (1997) Sensitivity to mycocins and morphological and physiological characteristics of authentic strains of Rhodotorula mucilaginosa synonyms. Mikrobiologiya 66:254–261

    Google Scholar 

  • Golubev WI, Churkina LG (2001) Specificity of yeast sensitivity to the mycocin of Tilletiopsis flava VKM Y-2823. Mikrobiologiya 70:51–54

    CAS  Google Scholar 

  • Golubev WI, Golubeva EW (2004) Yeast fungi in steppe and forest phytocenoses of the Prioksko-terrasny biosphere reserve. Mykol i Phytopathol 38:20–27

    Google Scholar 

  • Golubev WI, Kuznetsova LB (1989) Formation and spectrum of action of the mycocins of the basidiomycetous yeast Cryptococcus laurentii (Kufferath) Skinner. Mikrobiologiya 58:980–984

    CAS  Google Scholar 

  • Golubev WI, Kuznetsova LB (1991) Taxonomic specificity of action spectrum of Filobasidium capsuligenum mycocin. Mikrobiologiya 60:530–536

    Google Scholar 

  • Golubev WI, Nakase T (1997) Mycocinogeny in the genus Bullera: taxonomic specificity of sensitivity to the mycocin produced by Bullera sinensis. FEMS Microbiol Lett 146:59–64

    Article  PubMed  CAS  Google Scholar 

  • Golubev WI, Nakase T (1998) Mycocinogeny in the genus Bullera: killer activity of Bullera unica and intrageneric killer-sensitive relationships. Mikrobiologiya 67:225–230

    CAS  Google Scholar 

  • Golubev W, Shabalin Y (1994) Microcin production in Cryptococcus humicola. FEMS Microbiol Lett 119:105–110

    Article  PubMed  CAS  Google Scholar 

  • Golubev WI, Tsiomenko AB (1985) Killer strains of ballistospore-producing yeast-like fungus Sporidiobolus salmonicolor. Dokl Akad Nauk USSR 282:425–428

    Google Scholar 

  • Golubev WI, Bab’eva IP, Novik SN (1977) Yeast succession in sap flows of birch. Ekologia N 5:21–26

    Google Scholar 

  • Golubev WI, Ikeda R, Shinoda T, Nakase T (1996) Mycocinogeny in the genus Bullera: Antitremellaceous yeast activity of killer toxin produced by Bullera hannae. J Gen Appl Microbiol 42:471–79

    CAS  Google Scholar 

  • Golubev WI, Ikeda R, Shinoda T, Nakase T (1997a) Antifungal activity of Bullera alba (Hanna) Derx. Mycoscience 38:25–9

    Google Scholar 

  • Golubev WI, Okunev O, Golubev V (1997b) Biocontrol of postharvest rots of apple with Cryptococcus humicola. Abstracts of the 18th international spec symposium on Yeasts “Yeast nutrition and habitats” (14–29 August, Bled, Slovenia), P8-02

    Google Scholar 

  • Golubev WI, Ikeda R, Shinoda T (2000) Anti-Cryptococcus neoformans activity of saprotrophic tremelloid yeasts. Probl Med Mycol 2:39–43

    Google Scholar 

  • Golubev WI, Kulakovskaya TV, Golubeva EW (2001) Antifungal glycolipid production in Pseudozyma fusiformata VKM Y-2821. Mikrobiologiya 70:642–646

    CAS  Google Scholar 

  • Golubev WI, Pfeiffer I, Golubeva E (2002) Mycocin production in Trichosporon pullulans populations colonizing tree exudates in the spring. FEMS Microbiol Ecol 40:151–157

    CAS  PubMed  Google Scholar 

  • Golubev WI, Gadanho M, Sampaio JP, Golubev NW (2003a) Cryptococcus nemorosus sp. nov. and Cryptococcus perniciosus sp. nov., related to Papiliotrema Sampaio et al. (Tremellales). Int J Syst Evol Microbiol 53:905–911

    Article  PubMed  CAS  Google Scholar 

  • Golubev WI, Pfeiffer I, Churkina LG, Golubeva EW (2003b) Double-stranded RNA viruses in a mycocinogenic strain of Cystofilobasidium infirmominiatum. FEMS Yeast Res 3:63–68

    PubMed  CAS  Google Scholar 

  • Golubev WI, Kulakovskaya TV, Kulakovskaya EV, Golubev NW (2004) Fungicidal activity of extracellular glycolipid of Sympodiomycopsis paphiopedili Sugiyama et al. Mikrobiologiya 73:841–845

    CAS  Google Scholar 

  • Goto K, Iwatuki Y, Kitano K, Obata T, Hara S (1990) Cloning and nucleotide sequence of the KHR killer gene of Saccharomyces cerevisiae. Agric Biol Chem 54:979–984

    PubMed  CAS  Google Scholar 

  • Gunge N, Fukuda K, Morikawa S, Murakami K, Takeda M, Miwa A (1993) Osmophilic linear plasmids from the salt-tolerant yeast Debaryomyces hansenii. Curr Genet 23:443–449

    Article  PubMed  CAS  Google Scholar 

  • Hanes SD, Burn VE, Sturley SL, Tipper DJ, Bostian KA (1986) Expression of a cDNA derived from the yeast killer preprotoxin gene: implications for processing and immunity. Proc Natl Acad Sci USA 83:1675–1679

    PubMed  CAS  Google Scholar 

  • Heard GM, Fleet GH (1987) Occurrence and growth of killer yeasts during wine fermentation. Appl Environ Microbiol 53:2171–2174

    PubMed  Google Scholar 

  • Heintel T, Zagorc T, Schmitt MJ (2001) Expression, processing and high level secretion of a virus toxin in fission yeast. Appl Microbiol Biotechnol 56:165–172

    Article  PubMed  CAS  Google Scholar 

  • Hutchins K, Bussey H (1983) Cell wall receptor for yeast killer toxin: involvement of (1->6)-β-D-glucan. J Bacteriol 154:161–169

    PubMed  CAS  Google Scholar 

  • James R, Lazdunski C, Pattus F (eds) (1991) Bacteriocins, microcins and lantibiotics. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Janderova B, Gaskova D, Bendova O (1995) Consequences of Sporidiobolus pararoseus killer toxin action on sensitive cells. Folia Microbiol 40:165–167

    CAS  Google Scholar 

  • Javadekar VS, Siva Raman H, Gokhale DV (1995) Industrial yeast strain improvement: construction of a highly flocculent yeast with a killer character by protoplast fusion. J Ind Microbiol 15:94–102

    Article  PubMed  CAS  Google Scholar 

  • Kagan BL (1983) Mode action of yeast killer toxin: chanal formation in lipid bilayer membranes. Nature 302:709–711

    Article  PubMed  CAS  Google Scholar 

  • Kagiyama S, Aiba T, Kadowaki K, Mori K (1988) New killer toxin of halophilic Hansenula anomala. Agric Biol Chem 52:1–7

    CAS  Google Scholar 

  • Karamysheva ZN, Ksenzenko VN, Golubev WI, Ratner EN, Tikhomirova LP (1991) Characterization of viruses in the mycocinogenic strain of Cystofilobasidium bisporidii VKM Y-2700. Dokl Ross Akad Nauk 331:376–378

    Google Scholar 

  • Kasahara S, Inoue SB, Mio T, Yamada T, Nakajima T, Ichisima E, Furuichi Y, Yamada H (1994) Involvement of cell β-glucan in the action of HM-1 killer toxin. FEBS Lett 348:27–32

    Article  PubMed  CAS  Google Scholar 

  • Kimura T, Kitamoto N, Matsuoka K, Nakamura K, Iimura Y, Kiro Y (1993) Isolation and nucleotide sequences of the genes encoding killer toxins from Hansenula mrakii and H. saturnus. Gene 137:265–270

    Article  PubMed  CAS  Google Scholar 

  • Kimura T, Kitamoto N, Ohta Y, Kito Y, Iimura Y (1995) Structural relationships among killer toxins secreted from the killer strains of the genus Williopsis. J Fermen Bioengin 80: 85–87

    CAS  Google Scholar 

  • Kimura T, Komiyama T, Furuichi Y, Iimura Y, Karita S, Sakka K, Ohmiya K (1999) N-Glycosylation is involved in the sensitivity of Saccharomyces cerevisiae to HM-1 killer toxin secreted from Hansenula mrakii IFO 0895. App Microbiol Biotechnol 51:176–184

    CAS  Google Scholar 

  • Kitaite E, Čitavicčus D (1988) Virus-like particles from Sporidiobolus salmonicolor. Yeast 4:S185

    Google Scholar 

  • Kitamoto HK, Hasebe A, Ohmomo S, Suto EG, Muraki M, Iimura Y (1999) Prevention of aerobic spoilage of maize silage by genetically modified killer yeast, Kluyveromyces lactis, defective in the ability to grow on lactic acid. Appl Environ Microbiol 65:4697–4700

    PubMed  CAS  Google Scholar 

  • Klassen R, Meinhardt F (2003) Structural and functional analysis of the killer element pPin1-3 from Pichia inositovora. Mol Gen Genom 290:190–199

    Google Scholar 

  • Koltin Y (1988) The killer system of Ustilago maydis: secreted polypeptides encoded by viruses. In: Koltin Y, Leibowitz MJ (eds) Viruses of fungi and simple eukaryotes. Dekker, New York, pp 209–242

    Google Scholar 

  • Komiyama T, Ohta T, Furuichi Y, Ohta Y, Tsukada Y (1995) Structure and activity of HYI killer toxin from Hansenula saturnus. Biol Pharm Bull 18:1057–1059

    PubMed  CAS  Google Scholar 

  • Kono I, Himeno K (1997) A novel killer yeast effective on Schizosaccharomyces pombe. Biosci Biotechnol Biochem 61:563–564

    PubMed  CAS  Google Scholar 

  • Kreger-van Rij NJW, Veenhuis M (1971) A comparative study of the cell wall structure of basidiomycetous and related yeasts. J Gen Microbiol 68:87–95

    Google Scholar 

  • Kulakovskaya TV, Karamysheva ZN, Andreeva NA, Golubev WI (1996) Some characteristics of Cystofilobasidium bisporidii mycocin. Mikrobiologiya 65:772–776

    CAS  Google Scholar 

  • Kulakovskaya TV, Kulakovskaya EV, Golubev WI (2003) ATP leakage from yeast cells treated by extracellular glycolipids of Pseudozyma fusiformata. FEMS Yeast Res 3:401–404

    PubMed  CAS  Google Scholar 

  • Kulakovskaya TV, Shashkov AS, Kulakovskaya EV, Golubev WI (2004) Characterization of antifungal glycolipid secreted by Sympodiomycopsis paphiopedili. FEMS Yeast Res 5:247–252

    PubMed  CAS  Google Scholar 

  • Lang S, Wagner F (1987) Structure and properties of biosurfactants. In: Kosaric N, Cairns W, Gray NCC (eds) Biosurfactants and biotechnology. Dekker, New York, pp 21–45

    Google Scholar 

  • Laplace JM, Delgenes JP, Moletta R, Navarro JM (1992) Alcoholic glucose and xylose fermentations by the coculture process: compatibility and typing of associated strains. Can J Microbiol 38:654–658

    PubMed  CAS  Google Scholar 

  • Lehmann PF, Cowan LE, Jones RM, Ferencak WJ (1987a) Use of killer fungi and antifungal chemicals in characterization of yeast species and biotypes. Trans Br Mycol Soc 88:199–206

    Article  CAS  Google Scholar 

  • Lehmann PF, Lemon MB, Ferencak WJ (1987b) Antifungal compounds (“killer factors”) produced by Kluyveromyces species and their detection on an improved medium containing glycerol. Mycologia 79:790–794

    CAS  Google Scholar 

  • Ligon JM, Bolen PL, Hill DS, Bothast RJ, Kurtzman CP (1989) Physical and biological characterization of linear DNA plasmids of the yeast Pichia inositovora. Plasmid 21:185–194

    Article  PubMed  CAS  Google Scholar 

  • Llorente P, Marquina D, Santos A, Peinado JM, Spencer-Martins I (1997) Effect of salt on the killer phenotype of yeasts from olive brines. Appl Environ Microbiol 63:1165–1167

    PubMed  CAS  Google Scholar 

  • Lolle SJ, Bussey H (1986) In vivo evidence for signal cleavage of the killer preprotoxin of Saccharomyces cerevisiae. Mol Cell Biol 6:4274–4280

    PubMed  CAS  Google Scholar 

  • Lowes KF, Shearman CA, Payne J, MacKenzie D, Archer DB, Merry RJ, Gasson MJ (2000) Prevention of yeast spoilage in feed and food by the yeast mycocin HMK. Appl Environ Microbiol 66:1066–1076

    Article  PubMed  CAS  Google Scholar 

  • Makower M, Bevan EA (1963) The inheritance of a killer character in yeast Saccharomyces cerevisiae. Proc Int Congr Genet XI1:202

    Google Scholar 

  • Martinac B, Zhu H, Kubalski A, Zhou X, Culberston M, Bussey H, Kung C (1990) Yeast K1 toxin forms ion channels in sensitive yeast spheroplasts and in artificial liposomes. Proc Natl Acad USA 87:6228–6232

    CAS  Google Scholar 

  • McCracken DA, Martin VJ, Stark MJR, Bolen PL (1994) The linear-plasmid-encoded toxin produced by the yeast Pichia acaciae: characterization and comparison with the toxin of Kluyveromyces lactis. Microbiology 140:425–431

    Article  PubMed  CAS  Google Scholar 

  • Middelbeek EJ, Hermans JMH, Stumm C (1979) Production, purification and properties of a Pichia kluyveri killer toxin. Antonie van Leeuwenhoek 45:437–450

    Article  PubMed  CAS  Google Scholar 

  • Middelbeek EJ, Peters JGWH, Stumm C, Vogel GD (1980a) Properties of a Cryptococcus laurentii killer toxin and conditional killing effect of the toxin on Cryptococcus albidus. FEMS Microbiol Lett 9:81–84

    Article  CAS  Google Scholar 

  • Middelbeek EJ, Stumm C, Vogel GD (1980b) Effects of a Pichia kluyveri killer toxin on sensitive cells. Antonie van Leeuwenhoek 46:205–220

    PubMed  CAS  Google Scholar 

  • Middelbeek EJ, van der Laar HHAM, Hermans JMH, Stumm C, Vogel GD (1980c) Physiological conditions affecting the stability of Saccharomyces cerevisiae to a Pichia kluyveri killer toxin and energy requirement for toxin action. Antonie van Leeuwenhoek 46:483–497

    PubMed  CAS  Google Scholar 

  • Mizutani A, Hagiwara H, Yanasisawa K (1990) A killer factor produced by the cellular slime mold Polysphondylium pallidium. Arch Microbiol 153:413–416

    Article  CAS  Google Scholar 

  • Morace G, Archibusacci C, Sestito M, Polonelli L (1983/1984) Strain differentiation of pathogenic yeasts by the killer system. Mycopathol 84:81–85

    Google Scholar 

  • Nagornaya SS, Zharova VP, Kotlyar AN (1989) Yeast antagonists in the normal microflora of the intestine tract in long-livers of Abkhazia. Mikrobiol Zh 51:34–39

    Google Scholar 

  • Nakajima T, Aoyama K, Ichishima E, Matsuda K (1989) Structural analysis of β-glucans from a killer toxin sensitive yeast, Saccharomyces cerevisiae, and a killer-resistant mutant. Agric Biol Chem 53:1983–1985

    CAS  Google Scholar 

  • Naumov GI (1985) Comparative genetics of yeasts. XIII. Unusual inheritance of toxin production in Saccharomyces paradoxus Batschinskaya. Genetika 21:1794–1798

    PubMed  CAS  Google Scholar 

  • Nguyen HV, Panon G (1998) The yeast Metschnikowia pulcherrima has an inhibitory effect against various yeast species. Sci Aliments 18:515–526

    Google Scholar 

  • Nissen-Meyer J, Nes IF (1997) Ribosomally synthesized antimicrobial peptides: their function, structure, biogenesis, and mechanism of action. Arch Microbiol 167:67–77

    Article  CAS  Google Scholar 

  • Nomoto H, Kitano K, Shimizaki T, Kodama K, Hara S (1984) Distribution of killer yeasts in the genus Hansenula. Agric Biol Chem 48:807–809

    Google Scholar 

  • Nosik NN, Ershov FI, Nikolaeva OV, Bukata LA, Nesterova GF, Tushinskaya EV, Milovatskii VS (1984) Interferon-inducing and antiviral activity of yeast dsRNAs. Voprosy Virusologii 29:718–720

    PubMed  CAS  Google Scholar 

  • Ohta Y, Tsukada Y, Sugimori T (1984) Production, purification and characterization of HYI, an anti-yeast substance, produced by Hansenula saturnus. Agric Biol Chem 48:903–908

    CAS  Google Scholar 

  • Panchal CJ, Meacher C, van Oostrom J, Stewart GG (1985) Phenotypic expression of Kluyveromyces lactis killer toxin against Saccharomyces spp. Appl Environ Microbiol 50:257–260

    PubMed  CAS  Google Scholar 

  • Petersson S, Schnurer J (1995) Biocontrol of mold growth in high-moisture wheat stored under airtight conditions by Pichia anomala, Pichia guilliermondii and Saccharomyces cerevisiae. Appl Environ Microbiol 61:1027–1032

    PubMed  CAS  Google Scholar 

  • Pfeiffer I, Golubev WI, Farkas Z, Kucsera J, Golubev N (2004) Mycocin production in Cryptococcus aquaticus. Antonie van Leeuwenhoek 86:369–375

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer P, Radler F, Caspritz G, Hänel H (1988) Effect of a killer toxin of yeast on eukaryotic systems. Appl Environ Microbiol 54:1068–1069

    PubMed  CAS  Google Scholar 

  • Pintar J, Starmer WT (2003) The cost and benefits of killer toxin production by the yeast Pichia kluyveri. Antonie van Leeuwenhoek 83:89–98

    Article  PubMed  CAS  Google Scholar 

  • Polonelli L, Morace G (1986) Reevaluation of the yeast killer phenomenon. J Clin Microbiol 24:866–869

    PubMed  CAS  Google Scholar 

  • Polonelli L, Castagnola M, Rossetti DV, Morace G (1985) Use of killer toxins for computeraided differentiation of Candida albicans strains. Mycopathologia 91:175–179

    Article  PubMed  CAS  Google Scholar 

  • Polonelli L, Lorenzini R, De Bernardis F, Morace G (1986) Potential therapeutic effect of yeast killer toxin. Mycopathologia 96:103–107

    Article  PubMed  CAS  Google Scholar 

  • Polonelli L, Dettori G, Cattel C, Morace G (1987) Biotyping of mycelial fungus cultures by the killer system. Eur J Epidemiol 3:237–242

    Article  PubMed  CAS  Google Scholar 

  • Polonelli L., Séguy N, Conti S, Gerloni M, Bertolotti D, Cantelli C, Magliani W, Cailliez JC (1997) Monoclonal yeast killer toxin-like candidacidal antiidiotypic antibodies. Clin Diagn Lab Immunol 4:142–146

    PubMed  CAS  Google Scholar 

  • Price WS, Tsuchiya F, Suzuki C, Arata Y (1999) Characterization of the solution properties of Pichia farinosa killer toxin using PGSE NMR diffusion measurements. J Biomol NMR 13: 113–117

    Article  CAS  Google Scholar 

  • Puchkov EO, Wiese A, Seudel U, Kulakovskaya TV (2001) Cytoplasmic membrane of a sensitive yeast is a primary target for Cryptococcus humicola mycocidal compound (microcin). Biochim Biophys Acta (Biomembr) 1512:239–250

    PubMed  CAS  Google Scholar 

  • Puchkov EO, Zahringer U, Lindner B, Kulakovskaya TV, Seydel U, Wiese A (2002) Mycocidal, membrane-active complex of Cryptococcus humicola, a new type of cellobiose lipid with detergent features. Biochim Biophys Acta (Biomembranes) 1558:161–170

    PubMed  CAS  Google Scholar 

  • Quackenbush RL (1988) Endosymbionts of killer paramecia. In: Gottz HD (ed) Paramecium. Springer, Berlin Heidelberg New York, pp 406–418

    Google Scholar 

  • Radler F, Herzberger S, Schwarz P (1993) Investigation of a killer strain of Zygosaccharomyces bailii. J Gen Microbiol 139:494–500

    Google Scholar 

  • Riffer F, Eisfeld K, Breining F, Schmitt MJ (2002) Mutational analysis of K28 preprotoxin processing in the yeast Saccharomyces cerevisiae. Microbiology 148:1317–1328

    PubMed  CAS  Google Scholar 

  • Rogers D, Bevan EA (1978) Group classification of of killer yeasts based on cross-reactions between strains of different species and origin. J Gen Microbiol 105:199–202

    Google Scholar 

  • Rosini G, Cantini M (1987) Killer character in Kluyveromyces yeasts: activity on Kloeckera apiculata. FEMS Microbiol Lett 44:81–84

    Article  Google Scholar 

  • Santos A, Marquina D (2004) Ion channel activity by Pichia membranifaciens killer toxin. Yeast 21:151–162

    Article  PubMed  CAS  Google Scholar 

  • Santos A, Marquina D, Leal JA, Peinado JM (2000) (1->6)-β-Glucan as cell wall receptor for Pichia membranifaciens killer toxin. Appl Environ Microbiol 66:1809–1813

    PubMed  CAS  Google Scholar 

  • Sawant AD, Ahearn DG (1990) Involvement of a cell wall receptor in the mode of action of an anti-Candida toxin of Pichia anomala. Antimicrob Agents Chemother 34:1331–1335

    PubMed  CAS  Google Scholar 

  • Sawant AD, Abdelal AT, Ahearn DG (1989) Purification and characterization of anti-Candida toxin of Pichia anomala WC 65. Antimicrob Agents Chemother 33:48–52

    PubMed  CAS  Google Scholar 

  • Schaffrath R, Breunig KD (2000) Genetics and molecular physiology of the yeast Kluyveromyces lactis. Fungal Genet Biol 30:173–190

    Article  PubMed  CAS  Google Scholar 

  • Schmitt MJ, Neuhausen F (1994) Killer toxin-secreting double-stranded RNA mycoviruses in the yeasts Hanseniaspora uvarum and Zygosaccharomyces bailii. J Virol 68:1765–1772

    PubMed  CAS  Google Scholar 

  • Schmitt M, Radler F (1988) Molecular structure of the cell wall receptor for killer toxin KT28 in Saccharomyces cerevisiae. J Bacteriol 170:2192–2196

    PubMed  CAS  Google Scholar 

  • Schmitt MJ, Schernikau G (1997) Construction of a cDNA-based K1/K2/K28 triple killer strain of Saccharomyces cerevisiae. Food Technol Biotechnol 35:281–285

    CAS  Google Scholar 

  • Schmitt M, Brendel M, Schwarz R, Radler F (1989) Inhibition of DNA synthesis in Saccharomyces cerevisiae by yeast killer toxin KT28. J Gen Microbiol 135:1529–1535

    CAS  Google Scholar 

  • Schmitt MJ, Poravou O, Trenz K, Rehfeldt K (1997) Unique double-stranded RNAs responsible for the anti-Candida activity of the yeast Hanseniaspora uvarum. J Virol 71:8852–8855

    PubMed  CAS  Google Scholar 

  • Seguy N, Polonelli L, Dei-Cas E, Cailliez JC (1998) Effect of a killer toxin of Pichia anomala to Pneumocystis: perspectives in control of the pneumocystosis. FEMS Immunol Med Microbiol 22:145–149

    PubMed  CAS  Google Scholar 

  • Shemyakina TM, Vustin MM, Nesterenko MV, Timokhina EA, Sineoky SP (1991) New killer toxins produced by the yeast Williopsis subsufficiens and Williopsis beijerinckii. Mikrobiologiya 60:501–506

    CAS  Google Scholar 

  • Skipper N, Bussey H (1977) Mode action of yeast toxin: energy requirement for Saccharomyces cerevisiae killer toxin. J Bacteriol 129:668–677

    PubMed  CAS  Google Scholar 

  • Spencer JFT, Spencer DM, Tulloch AP (1979) Extracellular glycolipids of yeasts. In: Rose AH (ed) Economic microbiology, vol 3. Secondary products of metabolism. Academic, London, pp 523–540

    Google Scholar 

  • Sriprakash KS, Batum C (1984) Possible chromosomal location for the killer determinant in Torulopsis glabrata. Curr Genet 8:115–119

    Article  CAS  Google Scholar 

  • Stark MJR, Boyd A, Mileham AJ, Romanos MA (1990) The plasmid-encoded killer system of Kluyveromyces lactis: a review. Yeast 6:1–29

    PubMed  CAS  Google Scholar 

  • Starmer WT, Ganter P, Aberddeen V, Lachance MA, Phaff HJ (1987) The ecological role of killer yeasts in natural communities of yeasts. Can J Microbiol 33:783–796

    Article  PubMed  CAS  Google Scholar 

  • Starmer WT, Ganter PF, Aberdeen V (1992) Geographic distribution and genetics of killer phenotypes for yeast Pichia kluyveri across the United States. Appl Environ Microbiol 58:990–997

    PubMed  CAS  Google Scholar 

  • Sturley SL, Elliot Q, LeVitre J, Tipper DJ, Bostian KA (1986) Mapping of functional domains within the Saccharomyces cerevisiae type 1 killer preprotoxin. EMBO J 5:3381–3389

    PubMed  CAS  Google Scholar 

  • Suzuki C, Nikkuni S (1994) The primary and subunit structure of a novel type killer toxin produced by a halotolerant yeast, P. farinosa. J Biol Chem 269:3041–3046

    PubMed  CAS  Google Scholar 

  • Suzuki C, Yamada K, Okada N, Nikkuni S (1989) Isolation and characterization of halotolernat killer yeasts from fermented foods. Agric Biol Chem 53:2593–2597

    CAS  Google Scholar 

  • Takita MA, Castilho-Valavicius B (1993) Absence of cell wall chitin in Saccharomyces cerevisiae leads to resistance to Kluyveromyces lactis killer toxin. Yeast 9:589–598

    Article  PubMed  CAS  Google Scholar 

  • Theisen S, Molkenau E, Schmitt MJ (2000) Wicaltin, a new protein toxin secreted by the yeast Williopsis californica and its broad-spectrum antimycotic potential. J Microbiol Biotechnol 10:547–550

    CAS  Google Scholar 

  • Thornton RJ (1986) Genetic characterization of New Zealand and Australian wine yeasts. Antonie van Leeuwenhoek 52:97–103

    Article  PubMed  CAS  Google Scholar 

  • Tolstorukov II, Zimina MS, Kazantseva DI (1989) The killer factor k2 of the yeast Saccharomyces cerevisiae has a broad species spectrum of action. Biotekhnologiya 5:295–302

    CAS  Google Scholar 

  • Van Vuuren HJJ, Jacobs CJ (1992) Killer yeasts in the wine industry: a review. Am J Enol Vitic 7:113–118

    Google Scholar 

  • Vaughan-Martini A, Rosini G (1989) Killer relationships within the yeast genus Kluyveromyces. Mycologia 81:317–321

    Google Scholar 

  • Vaughan-Martini A, Rosini G, Martini A (1988) Killer sensitivity patterns as a tool for the fingerprinting of strains within the yeast species Kluyveromyces lactis and K. marxianus. Biotechnol Techniques 2:293–296

    Google Scholar 

  • Vital MJS, Abranches J, Hagler AN, Mendonca-Hagler LC (2002) Mycocinogenic yeasts isolated from Amazon soils of the Maraca ecological station, Roraima-Brazil. Braz J Microbiol 33:230–235

    Article  Google Scholar 

  • Vondrejs V (1987) A killer system in yeasts: applications to genetic and industry. Microbiol Sci 4:313–316

    PubMed  CAS  Google Scholar 

  • Vustin MM, Vavilova EA, Sineoki SP (1988) The use of sensitivity to antibiotics produced by the representatives of the genera Williopsis and Zygowilliopsis for yeast identification. Mikrobiologiya 57:653–657

    CAS  Google Scholar 

  • Vustin MM, Shemyakina TM, Rebentish BA, Bychkova MA, Kharitonov SI, Belyaev SV, Timokhina EA, Sineoki SP (1989) A killer protein produced by the yeast Hansenula anomala (Hansen) H. et P. Sydow. Dokl Akad Nauk SSSR 313:207–211

    Google Scholar 

  • Vustin MM, Kalina EN, Babjeva IP, Reshetova IS, Sineoky SP (1990) Antibiotic activity of yeasts of the genus Metschnikowia Kamienski. Dokl Akad Nauk USSR 313:207–211

    CAS  Google Scholar 

  • Vustin MM, Bab’eva IP, Reshetova IS, Shemyakina TM, Sineoki SP (1991) Taxonomic differentiation of basidiomycetous yeasts by sensitivity to killer toxin of Williopsis pratensis. Mikrobiologiya 60:345–349

    CAS  Google Scholar 

  • Vustin MM, Kalina EN, Babjeva IP, Reshetova IS, Sineoky SP (1993) Killer toxins in the yeast genus Debaryomyces. Mikrobiologiya 62:151–155

    CAS  Google Scholar 

  • Walker GM, McLeod AH, Hodgson VJ (1995) Interactions between killer yeasts and pathogenic fungi. FEMS Microbiol Lett 127:213–222

    Article  PubMed  CAS  Google Scholar 

  • Weiler F, Schmitt MJ (2003) Zygocin, a secreted antifungal toxin of the yeast Zygosaccharomyces bailii, and its effect on sensitive fungal cells. FEMS Yeast Res 3:69–76

    PubMed  CAS  Google Scholar 

  • Weijman ACM, Golubev WI (1987) Carbohydrate patterns and taxonomy of yeasts and yeastlike fungi. Stud Mycol N 30:361–371

    Google Scholar 

  • Wickner RB (1996) Double-stranded RNA viruses of Saccharomyces cerevisiae. Microbiol Rev 10:250–265

    Google Scholar 

  • Wilson C, Whittaker PA (1989) Factors affecting activity and stability of the Kluyveromyces lactis killer toxin. Appl Environ Microbiol 55:695–699

    PubMed  CAS  Google Scholar 

  • Wingfield BD, Southgate VJ, Pretorius IS, van Vuuren HJJ (1990) A K2 neutral Saccharomyces cerevisiae strain contains a variant K2 M genome. Yeast 6:159–169

    Article  PubMed  CAS  Google Scholar 

  • Woods DR, Bevan EA (1968) Studies on the nature of the killer factor produced by Saccharomyces cerevisiae. J Gen Microbiol 51:115–126

    PubMed  CAS  Google Scholar 

  • Yamamoto T, Hiratani T, Hirata H, Imai M, Yamaguchi H (1986) Killer toxin from Hansenula mrakii selectively inhibits cell wall synthesis in a sensitive yeast. FEBS Lett 197:50–54

    Article  PubMed  CAS  Google Scholar 

  • Yokomori Y, Akyiama H, Shimizu K (1988) Toxins of a wild Candida killer yeast with a novel killer property. Agric Biol Chem 52:2797–2801

    CAS  Google Scholar 

  • Young TW, Yagiu M (1978) A comparison of the killer character in different yeasts and its classification. Antonie van Leeuwenhoek 44:5977

    Article  Google Scholar 

  • Zekhnov AM, Soom YO, Nesterova GF (1989) New test strains for detecting the antagonistic activity of yeasts. Mikrobiologiya 58:807–811

    Google Scholar 

  • Zhu H, Bussey H (1989) The K1 toxin of Saccharomyces cerevisiae kills spheroplasts of many yeast species. Appl Environ Microbiol 55:2105–2107

    PubMed  CAS  Google Scholar 

  • Zhu H, Bussey H (1991) Mutational analysis of the functional domains of yeast K1 killer toxin. Mol Cell Biol 11:175–181

    PubMed  CAS  Google Scholar 

  • Zhu H, Bussey H, Thomas DY, Gagnon J, Bell AW (1987) Determination of the carboxyl termini of the α and β subunits of yeast K1 killer toxin. J Biol Chem 282:10728–10732

    Google Scholar 

  • Zorg J, Kilian S, Radler F (1988) Killer toxin prodicing strains of the yeasts Hanseniaspora uvarum and Pichia kluyveri. Arch Microbiol 149:261–267

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Golubev, W. (2006). Antagonistic Interactions Among Yeasts. In: Péter, G., Rosa, C. (eds) Biodiversity and Ecophysiology of Yeasts. The Yeast Handbook. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30985-3_10

Download citation

Publish with us

Policies and ethics