Advertisement

Funktionelle Neuroanatomie des limbischen Systems

  • Gerhard Roth
  • Ursula Dicke

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Adamec RE, Blundell J, Burton P (2003) Phosphorylated cyclic AMP response element binding protein expression induced in the periaqueductal gray by predator stress: its relationship to the stress experience, behavior and limbic neural plasticity. Prog Neuropsychopharmacol Biol Psychiatry 27: 1243–1267PubMedCrossRefGoogle Scholar
  2. Adell A, Celada P, Abellan MT, Artigas F (2002) Origin and functional role of the extracellular serotonin in the midbrain raphe nuclei. Brain Res Rev 39: 154–180PubMedCrossRefGoogle Scholar
  3. Adolphs R, Tranel D (2000) Emotion, recognition, and the human amygdala. In: Aggleton JP (ed) The amygdala. A functional analysis. Oxford University Press, New York, pp 587–630Google Scholar
  4. Adolphs R, Tranel D, Damasio AR (1998) The human amygdala in social judgement. Nature 393: 470–474PubMedCrossRefGoogle Scholar
  5. Aggleton JP (1992) The amygdala: Neurobiological aspects of emotion, memory, and mental dysfunction. Wiley-Liss, New YorkGoogle Scholar
  6. Aggleton, JP (2000) The amygdala. A functional analysis. Oxford University Press, New YorkGoogle Scholar
  7. Akert K (1994) Limbisches System. In: Drenckhahn D, Zenker W (Hrsg) Benninghoff Anatomie, Bd 2. Urban & Schwarzenberg, München, S 603–627Google Scholar
  8. Alden M, Besson JM, Bernard JF (1994) Organization of the efferent projections from the pontine parabrachial area to the bed nucleus of the stria terminalis and neighboring regions: a PHA-L study in the rat. J Comp Neurol 341: 289–314PubMedCrossRefGoogle Scholar
  9. Alexander GE, Crutcher MD, DeLong MR (1990) Basal ganglia — thalamocortical circuits: parallel substrates for motor, oculomotor, ≫prefrontal≪ and ≫limbic≪ functions. In: Uylings HBM, van Eden CG, de Bruin JPC, Corner MA, Feenstra MGP (eds) The prefrontal cortex. Its structure, function and pathology. Elsevier, Amsterdam, pp 119–146Google Scholar
  10. Alheid GF (2003) Extended amygdala and basal forebrain. Ann NY Acad Sci 985: 185–205PubMedCrossRefGoogle Scholar
  11. Alheid GF, Heimer L (1988) New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorders: the striatopallidal, amygdaloid, and corticopetal components of substantia innominata. Neuroscience 27: 1–39PubMedCrossRefGoogle Scholar
  12. Alheid GF, de Olmos JS, Beltramino CA (1995) Amygdala and extended amygdala. In: Paxinos G (ed) The rat nervous system. Academic Press, London, pp 495–578Google Scholar
  13. Alheid GF, Beltramino CA, de Olmos JS, Forbes MS, Swanson DJ, Heimer L (1998) The neuronal organization of the supracapsular part of the stria terminalis in the rat. The dorsal component of the extended amygdala. Neuroscience 84: 967–996PubMedCrossRefGoogle Scholar
  14. Allen GV, Cechetto DF (1992) Functional and anatomical organization of cardiovascular pressor and depressor sites in the lateral hypothalamic area: I. Descending projections. J Comp Neurol 315: 313–332PubMedCrossRefGoogle Scholar
  15. Allen GV, Hopkins DA (1990) Topography and synaptology of mammillary body projections to the mesencephalon and pons in the rat. J Comp Neurol 301: 214–231PubMedCrossRefGoogle Scholar
  16. Allen GV, Saper CB, Hurley KM, Cechetto DF (1991) Organization of visceral and limbic connections in the insular cortex of the rat. J Comp Neurol 311: 1–16PubMedCrossRefGoogle Scholar
  17. Amaral, DG (2002) The primate amygdala and the neurobiology of social behavior: Implications for understanding social anxiety. Biol Psychiatry 51: 11–17PubMedCrossRefGoogle Scholar
  18. Amorapanth P, LeDoux JE, Nader K (2000) Different lateral amygdala outputs mediate reactions and actions elicited by a fear-arousing stimulus. Nature Neurosci 3: 74–79PubMedCrossRefGoogle Scholar
  19. Anderson SW, Bechara A, Damasio H, Tranel D, Damasio AR (1999) Impairment of social and moral behavior related to early damage in human prefrontal cortex. Nature Neurosci 2: 1032–1037PubMedCrossRefGoogle Scholar
  20. Arango V, Underwood MD, Mann JJ (2002) Serotonin brain circuits involved in major depression and suicide. Prog Brain Res 136: 443–453PubMedCrossRefGoogle Scholar
  21. Aston-Jones G, Shipley MT, Grzanna R (1995) The locus coeruleus, A5 and A7 noradrenergic cell groups. In: Paxinos G (ed) The rat nervous system. Academic Press, London, pp 183–213Google Scholar
  22. Austin MC, Rhodes JL, Lewis DA (1997) Differential distribution of corticotropin-releasing hormone immunoreactive axons in monoaminergic nuclei of the human brainstem. Neuropsychopharmacology 17: 326–341PubMedCrossRefGoogle Scholar
  23. Babstock D, Malsbury CW, Harley CW (1997) The dorsal locus coeruleus is larger in male than in female Sprague-Dawley rats. Neurosci Lett 224: 157–160PubMedCrossRefGoogle Scholar
  24. Bathgate RA, Samuel CS, Burazin TC et al (2002) Human relaxin gene 3 (H3) and the equivalent mouse relaxin (M3) gene. Novel members of the relaxin peptide family. J Biol Chem 277: 1148–1157PubMedCrossRefGoogle Scholar
  25. Bauer M, Heinz A, Whybrow PC (2002) Thyroid hormones, serotonin and mood: of synergy and significance in the adult brain. Mol Psychiatry 7: 140–156PubMedCrossRefGoogle Scholar
  26. Baumann B, Bogerts B (2001) Neuroanatomical studies on bipolar disorder. Br J Psychiatry Suppl 41: 142–147CrossRefGoogle Scholar
  27. Beitz AJ (1995) Periaqueductal grey. In: Paxinos G (ed) The rat nervous system. Academic Press, London, pp 173–182Google Scholar
  28. Bernard JF, Alden M, Besson JM (1993) The organization of the efferent projections from the pontine parabrachial area to the amygdaloid complex: a Phaseolus vulgaris leucoagglutinin (PHA-L) study in the rat. J Comp Neurol 329: 201–229PubMedCrossRefGoogle Scholar
  29. Bernard JF, Dallel R, Raboisson P, Villanueva L, Le Bars D (1995) Organization of the efferent projections from the spinal cervical enlargement to the parabrachial area and periaqueductal gray: a PHA-L study in the rat. J Comp Neurol 353: 480–505PubMedCrossRefGoogle Scholar
  30. Berridge CW, Waterhouse BD (2003) The locus coeruleus noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Rev 42: 33–84PubMedCrossRefGoogle Scholar
  31. Bester H, Besson JM, Bernard JF (1997) Organization of efferent projections from the parabrachial area to the hypothalamus: a Phaseolus vulgaris leucoagglutinin study in the rat. J Comp Neurol 383: 245–281PubMedCrossRefGoogle Scholar
  32. Bester H, Bourgeais L, Villanueva L, Besson JM, Bernard JF (1999) Differential projections to the intralaminar and gustatory thalamus from the parabrachial area: a PHA-L study in the rat. J Comp Neurol 405: 421–449PubMedCrossRefGoogle Scholar
  33. Bevan MD, Bolam JP (1995) Cholinergic, GABAergic, and glutamate-enriched inputs from the mesopontine tegmentum to the subthalamic nucleus in the rat. J Neurosci 15: 7105–7120PubMedGoogle Scholar
  34. Blok BF, De Weerd H, Holstege G (1995) Ultrastructural evidence for a paucity of projections from the lumbosacral cord to the pontine micturition center or M-region in the cat: a new concept for the organization of the micturition reflex with the periaqueductal gray as central relay. J Comp Neurol 359: 300–309PubMedCrossRefGoogle Scholar
  35. Bonda E (2000) Organization of connections of the basal and accessory basal nuclei in the monkey amygdala. Eur J Neurosci 12: 4153CrossRefGoogle Scholar
  36. Boudin H, Pelaprat D, Rostene W, Beaudet A (1996) Cellular distribution of neurotensin receptors in rat brain: immunohistochemical study using an antipeptide antibody against the cloned high affinity receptor. J Comp Neurol 373: 76–89PubMedCrossRefGoogle Scholar
  37. Bouret S, Sara SJ (2002) Locus coeruleus activation modulates firing rate and temporal organization of odour-induced single-cell responses in rat piriform cortex. Eur J Neurosci 16: 2371–2382PubMedCrossRefGoogle Scholar
  38. Brauer K, Hausser M, Hartig W, Arendt T (2000) The core-shell dichotomy of nucleus accumbens in the rhesus monkey as revealed by double immunofluorescence and morphology of cholinergic interneurons. Brain Res 858: 151–162PubMedCrossRefGoogle Scholar
  39. Brunia CHM, van Boxtel GJM (2000) Motor preparation. In: Cacioppo JT, Tassinary LG, Berntson GG (eds) Handbook of psychophysiology. Cambridge University Press, Cambridge, pp 507–532Google Scholar
  40. Burazin TC, Bathgate RA, Macris M, Layfield S, Gundlach AL, Tregear GW (2002) Restricted, but abundant, expression of the novel rat gene-3 (R3) relaxin in the dorsal tegmental region of brain. J Neurochem 82: 1553–1557PubMedCrossRefGoogle Scholar
  41. Bush P, Luu P, Posner MI (2000) Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci 4: 215–222PubMedCrossRefGoogle Scholar
  42. Cahill L, McGaugh J (1998) Mechanisms of emotional arousal and lasting declarative memory. Trends Neurosci 21: 294–299PubMedCrossRefGoogle Scholar
  43. Canli T, Sivers H, Whitfield SL, Gotlib IH, Gabrieli JDE (2002) Amygdala responses to happy faces as a function of extraversion. Science 296: 2191–2195PubMedCrossRefGoogle Scholar
  44. Canteras NS, Simerly RB, Swanson LW (1994) Organization of projections from the ventromedial nucleus of the hypothalamus: a Phaseolus vulgaris leucoagglutinin study in the rat. J Comp Neurol. 348: 41–79PubMedCrossRefGoogle Scholar
  45. Canteras NS, Simerly RB, Swanson LW (1995) Organization of projections from the medial nucleus of the amygdala: a PHAL study in the rat. J Comp Neurol 360: 213–245PubMedCrossRefGoogle Scholar
  46. Caous CA, de Sousa Buck H, Lindsey CJ (2001) Neuronal connections of the paratrigeminal nucleus: a topographic analysis of neurons projecting to bulbar, pontine and thalamic nuclei related to cardiovascular, respiratory and sensory functions. Auton Neurosci 94: 14–24PubMedCrossRefGoogle Scholar
  47. Cardinal RN, Parkinson JA, Hall J, Everitt BJ (2002) Emotion and motivation: the role of the amygdala, ventral striatum and prefrontal cortex. Neurosci Biobehav Rev 26: 321–352PubMedCrossRefGoogle Scholar
  48. Carmichael ST, Price JL (1995) Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. J Comp Neurol 363: 615–641PubMedCrossRefGoogle Scholar
  49. Carmichael, ST, Clugnet MC, Price JL (1994) Central oflactory connections in the macaque monkey. J Comp Neurol 346: 403–434PubMedCrossRefGoogle Scholar
  50. Carnes KM, Fuller TA, Price JL (1990) Sources of presumptive glutamatergic/aspartatergic afferents to the magnocellular basal forebrain in the rat. J Comp Neurol 302: 824–852PubMedCrossRefGoogle Scholar
  51. Carter CS, Braver TS, Barch DM, Bitvinick MM, Noll D, Cohen JD (1998): Anterior cingulate cortex, error detection, and the online monitoring of performance. Science 280: 747–749PubMedCrossRefGoogle Scholar
  52. Cassell MD, Freedman LJ, Shi CJ (1999) The intrinsic organization of the central extended amygdala. Ann NY Acad Sci 877: 217–241PubMedCrossRefGoogle Scholar
  53. Chalmers DT, Lovenberg TW, De Souza EB (1995) Localization of novel corticotropin-releasing factor receptor (CRF2) mRNA expression to specific subcortical nuclei in rat brain: comparison with CRF1 receptor mRNA expression. J Neurosci 15: 6340–6350PubMedGoogle Scholar
  54. Chen SY, Chai CY (2002) Coexistence of neurons integrating urinary bladder activity and pelvic nerve activity in the same cardiovascular areas of the pontomedulla in cats. Chin J Physiol 45: 41–50PubMedGoogle Scholar
  55. Covenas R, de Leon M, Narvaez JA, Aguirre JA, Tramu G, Gonzalez-Baron S (1997) ACTH/CLIP immunoreactivity in the cat brain stem. Peptides 18: 965–970PubMedCrossRefGoogle Scholar
  56. Covenas R, de Leon M, Narvaez JA, Aguirre JA, Tramu G, Gonzalez-Baron S (1999) Anatomical distribution of β-endorphin (1-27) in the cat brainstem: an immunocytochemical study. Anat Embryol 199: 161–167PubMedCrossRefGoogle Scholar
  57. Covenas R, Martin F, Belda M et al (2003) Mapping of neurokinin-like immunoreactivity in the human brainstem. BMC Neurosci 4: 3PubMedCentralPubMedCrossRefGoogle Scholar
  58. Craig AD (1995) Distribution of brainstem projections from spinal lamina I neurons in the cat and the monkey. J Comp Neurol 361: 225–248PubMedCrossRefGoogle Scholar
  59. Cunnington R, Iansek R, Johnson KA, Bradshaw JL (1997) Movement-related potentials in Parkinson’s disease. Brain 120: 1339–1353PubMedCrossRefGoogle Scholar
  60. Dahlström A, Fuxe K (1964) Evidence for the existence of monoaminecontaining neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand Suppl 62: 1–55Google Scholar
  61. Darlington DN, Schiller MR, Mains RE, Eipper B (1997) Expression of RESP18 in peptidergic and catecholaminergic neurons. J Histochem Cytochem 45: 1265–1277PubMedCrossRefGoogle Scholar
  62. da Silva LG, de Menezes RC, dos Santos RA, Campagnole-Santos MJ, Fontes MA (2003) Role of periaqueductal gray on the cardiovascular response evoked by disinhibition of the dorsomedial hypothalamus. Brain Res 984: 206–214PubMedCrossRefGoogle Scholar
  63. Davis M. (1998): Are different parts of the extended amygdala involved in fear versus anxiety? Biol Psychiatry 44: 1239–1247PubMedCrossRefGoogle Scholar
  64. Deniau JM, Menetrey A, Thierry AM (1994) Indirect nucleus accumbens input to the prefrontal cortex via the substantia nigra pars reticulata: a combined anatomical and electrophysiological study in the rat. Neuroscience 61: 533–545PubMedCrossRefGoogle Scholar
  65. de Olmos JS, Heimer L (1999) The concept of the ventral striatopallidal system and extended amydala. Ann NY Acad Sci 877: 1–32PubMedCrossRefGoogle Scholar
  66. Depaulis A, Bandler R (1991) The midbrain periaqueductal gray matter: Functional, anatomical and neurochemical organization. Plenum Press, New YorkCrossRefGoogle Scholar
  67. di Lorenzo PM, Monroe S. (1997) Transfer of information about taste from the nucleus of the solitary tract to the parabrachial nucleus of the pons. Brain Res 763: 167–181PubMedCrossRefGoogle Scholar
  68. Dolan RJ (2000) Functional neuroimaging on the human amygdala during emotional processing and learning. In: Aggleton JP (ed) The amygdala. A functional analysis. Oxford University Press, New York, pp 631–653Google Scholar
  69. Dong HW, Swanson LW (2003) Projections from the rhomboid nucleus of the bed nuclei of the stria terminalis: implications for cerebral hemisphere regulation of ingestive behaviors. J Comp Neurol 463: 434–472PubMedCrossRefGoogle Scholar
  70. Dong HW, Swanson LW (2004) Organization of axonal projections from the anterolateral area of the bed nuclei of the stria terminalis. J Comp Neurol 468: 277–298PubMedCrossRefGoogle Scholar
  71. Dong HW, Petrovich GD, Swanson LW (2001a) Topography of projections from amygdala to bed nucleus of the stria terminalis. Brain Res Rev 38: 192–246PubMedCrossRefGoogle Scholar
  72. Dong HW, Petrovich GD, Watts AG, Swanson LW (2001b) Basic organization of projections from the oval and fusiform nuclei of the bed nucleus of the stria terminalis in adult rat brain. J Comp Neurol 436: 430–455PubMedCrossRefGoogle Scholar
  73. Doron NN, LeDoux JE (1999) Organization of projections to the lateral amygdala from auditory and visual areas of the thalamus in the rat. J Comp Neurol 412: 383–409PubMedCrossRefGoogle Scholar
  74. Doron NN, LeDoux JE (2000) Cells in the posterior thalamus project to both the amygdala and temporal cortex: a quantitative retrograde double-labeling study in the rat. J Comp Neurol 425: 257–274PubMedCrossRefGoogle Scholar
  75. Drenckhahn D, Zenker W (1994) Benninghoff Anatomie, Bd 2, Urban & Schwarzenberg, MünchenGoogle Scholar
  76. Dumont Y, Jacques D, Bouchard P, Quirion R (1998) Species differences in the expression and distribution of the neuropeptide Y Y1, Y2, Y4, and Y5 receptors in rodent, guinea pig, and primates brains. J Comp Neurol 402: 372–384PubMedCrossRefGoogle Scholar
  77. Dun NJ, Dun SL, Hwang LL, Forstermann U (1995) Infrequent coexistence of nitric oxide synthase and parvalbumin, calbindin and calretinin immunoreactivity in rat pontine neurons. Neurosci Lett 191: 165–168PubMedCrossRefGoogle Scholar
  78. Emery NJ, Amaral DG (2000) The role of the amygdala in primate social cognition. In: Lane RD, Nadel L (eds) Cognitive neuroscience of emotion. Oxford University Press, New York, pp 156–191Google Scholar
  79. Everitt BJ, Parkinson JA, Olmstead MC, Arroyo M, Robledo P, Robbins TW (1999) Associative processes in addiction and reward. The role of amygdala-ventral striatal subsystems. Ann NY Acad Sci 877: 412–438PubMedCrossRefGoogle Scholar
  80. Everitt BJ, Cardinal RN, Parkinson HA, Robbins TW (2003) Impact of amygdala-dependent mechanisms of emotional learning. Ann NY Acad Sci 985: 233–250PubMedCrossRefGoogle Scholar
  81. Fallon JH, Loughlin SE (1995) Substantia nigra. In: Paxinos G (ed) The rat nervous system. Academic Press, London, pp 215–237Google Scholar
  82. Feil K, Herbert H (1995) Topographic organization of spinal and trigeminal somatosensory pathways to the rat parabrachial and Kolliker-Fuse nuclei. J Comp Neurol 353: 506–528PubMedCrossRefGoogle Scholar
  83. Fendt M, Fanselow MS (1999) The neuroanatomical and neurochemical basis of conditioned fear. Neurosci Biobehav Rev 23: 743–760PubMedCrossRefGoogle Scholar
  84. Ferry AT, Ongur D, An X, Price L (2000) Prefrontal cortical projections to the striatum in macaque monkeys: evidence for an organization related to prefrontal networks. J Comp Neurol 425: 447–470PubMedCrossRefGoogle Scholar
  85. François C, Yelnik J, Tande D, Agid Y, Hirsch EC (1999) Dopaminergic cell group A8 in the monkey: anatomical organization and projections to the striatum. J Comp Neurol 414: 334–347PubMedCrossRefGoogle Scholar
  86. French SJ, Totterdell S (2002) Hippocampal and prefrontal cortical inputs monosynaptically converge with individual projection neurons of the nucleus accumbens. J Comp Neurol 446: 151–165PubMedCrossRefGoogle Scholar
  87. Freund TF (1992) GABAergic septal and serotonergic median raphe afferents preferentially innervate inhibitory interneurons in the hippocampus and dentate gyrus. Epilepsy Res Suppl 7: 79–91Google Scholar
  88. Fudge JL, Haber SN (2000) The central nucleus of the amygdala projection to dopamine subpopulations in primates. Neurosci 97: 479–494CrossRefGoogle Scholar
  89. Fudge JL, Haber SN (2002) Defining the caudal ventral striatum in primates: cellular and histochemical features. J Neurosci 22: 1078–1082Google Scholar
  90. Fudge JL, Kunishio K, Walsh P, Richard C, Haber SN (2002) Amygdaloid projections to the ventromedial striatal subterritories in the primate. Neuroscience 110: 257–275PubMedCrossRefGoogle Scholar
  91. Gai WP, Blumbergs PC, Geffen LB, Blessing WW (1993) Galanin-containing fibers innervate substance P-containing neurons in the pedunculopontine tegmental nucleus in humans. Brain Res 618: 135–141PubMedCrossRefGoogle Scholar
  92. Gaykema RP, Zaborszky L (1996) Direct catecholaminergic-cholinergic interactions in the basal forebrain. II. Substantia nigra-ventral tegmental area projections to cholinergic neurons. J Comp Neurol 374: 555–577PubMedCrossRefGoogle Scholar
  93. Gehring WJ, Knight RT (2000) Prefrontal-cingulate interactions in action monitoring. Nature Neurosci 3: 516–520PubMedCrossRefGoogle Scholar
  94. Gehring WJ, Willoughby AR (2002) The medial frontal cortex and the rapid processing of monetary gains and losses. Science 295: 2279–2282PubMedCrossRefGoogle Scholar
  95. Gershon ES, Rieder RO (1992) Molekulare Grundlagen von Geistes-und Gemütskrankheiten. Spektr Wiss 11: 114–123Google Scholar
  96. Gimenez-Amaya JM, McFarland NR, de las Heras S, Haber SN (1995) Organization of thalamic projections to the ventral striatum in the primate J Comp Neurol 354: 127–149PubMedCrossRefGoogle Scholar
  97. Gioia M, Vizzotto L, Bianchi R (1994) A cluster analysis of the neurons of the rat interpeduncular nucleus. J Anat 185: 459–464PubMedCentralPubMedGoogle Scholar
  98. Gioia M, Rodella L, Petruccioli MG, Bianchi R (2000) The cytoarchitecture of the adult human parabrachial nucleus: a Nissl and Golgi study. Arch Histol Cytol 63: 411–424PubMedCrossRefGoogle Scholar
  99. Givens B, Sarter M (1997) Modulation of cognitive processes by transsynaptic activation of the basal forebrain. Behav Brain Res 84: 1–22PubMedCrossRefGoogle Scholar
  100. Gonzalo-Ruiz A, Alonso A, Sanz JM, Llinas RR (1992) Afferent projections to the mammillary complex of the rat, with special reference to those from surrounding hypothalamic regions. J Comp Neurol 321: 277–299PubMedCrossRefGoogle Scholar
  101. Gonzalo-Ruiz A, Lieberman AR, Sanz-Anquela JM (1995) Organization of serotoninergic projections from the raphe nuclei to the anterior thalamic nuclei in the rat: a combined retrograde tracing and 5-HT immunohistochemical study. J Chem Neuroanat 8: 103–115PubMedCrossRefGoogle Scholar
  102. Gonzalo-Ruiz A, Romero JC, Sanz JM, Morte L (1999) Localization of amino acids, neuropeptides and cholinergic neurotransmitter markers in identified projections from the mesencephalic tegmentum to the mammillary nuclei of the rat. J Chem Neuroanat 16:117–133PubMedCrossRefGoogle Scholar
  103. Goto M, Swanson LW, Canteras NS (2001) Connections of the nucleus incertus. J Comp Neurol 438: 86–122PubMedCrossRefGoogle Scholar
  104. Gottfried JA, O’Doherty J, Dolan RJ (2003) Encoding predictive reward value in human amygdala and orbitofrontal cortex. Science 301: 1104–1107PubMedCrossRefGoogle Scholar
  105. Graybiel AM, Ragsdale CW (1978) Histochemically distinct compartments in the striatum of human, monkey and cat demonstrated by acetylcholine esterase staining. Proc Natl Acad Sci USA 75: 5723–5726PubMedCentralPubMedCrossRefGoogle Scholar
  106. Graybiel AM, Ragsdale CW (1983) Biochemical anatomy of the striatum. In: Emson PC (ed) Chemical neuroanatomy. Raven Press, New York, pp 427–504Google Scholar
  107. Graybiel AM., Aosaki T, Flaherty AW, Kimura M (1994) The basal ganglia and adaptive motor control. Science 265: 1826–1831PubMedCrossRefGoogle Scholar
  108. Greco MA, Shiromani PJ (2001) Hypocretin receptor protein and mRNA expression in the dorsolateral pons of rats. Brain Res Mol 88: 176–182CrossRefGoogle Scholar
  109. Groenewegen HJ, Room P, Witter MP, Lohman AH (1982) Cortical afferents of the nucleus accumbens in the cat, studied with anterograde and retrograde transport techniques. Neuroscience 7: 977–996PubMedCrossRefGoogle Scholar
  110. Groenewegen HJ, Berendse HW, Haber SN (1993) Organization of the output of the ventral striatopallidal system in the rat: ventral pallidal efferents. Neuroscience 57: 113–142PubMedCrossRefGoogle Scholar
  111. Groenewegen HJ, Wright CI, Beijer AV, Voorn P (1999) Convergence and segregation of ventral striatal inputs and outputs. Ann NY Acad Sci 877: 49–63PubMedCrossRefGoogle Scholar
  112. Haber SN, Fudge JL, McFarland NR (2000) Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci 20: 2369–2382PubMedGoogle Scholar
  113. Hallanger AE, Wainer BH (1988) Ascending projections from the pedunculopontine tegmental nucleus and the adjacent mesopontine tegmentum in the rat. J Comp Neurol 274: 483–515PubMedCrossRefGoogle Scholar
  114. Halliday GM, Gai WP, Blessing WW, Geffen LB (1990) Substance P-containing neurons in the pontomesencephalic tegmentum of the human brain. Neuroscience 39: 81–96PubMedCrossRefGoogle Scholar
  115. Hamill GS, Jacobowitz DM (1984) A study of afferent projections to the rat interpeduncular nucleus. Brain Res Bull 13: 527–539PubMedCrossRefGoogle Scholar
  116. Haring JH, Davis JN (1983) Topography of locus coeruleus neurons projecting to the area dentata. Exp Neurol 79: 785–800PubMedCrossRefGoogle Scholar
  117. Hariri AR, Mattay VS, Tessitore A et al (2002) Serotonin transporter genetic variation and the response of the human amygdala. Science 297: 400–403PubMedCrossRefGoogle Scholar
  118. Hariri AR, Mattay VS, Tessitore A, Fera F, Weinberger DR (2003) Neocortical modulation of the amygdala response to fearful stimuli. Biol Psychiatry 53: 494–501PubMedCrossRefGoogle Scholar
  119. Hasue RH, Shammah-Lagnado SJ (2002) Origin of dopaminergic innervation of the central extended amygdala and accumbens shell: a combined retrograde tracing and immunohistochemical study in the rat. J Comp Neurol 454: 15–33PubMedCrossRefGoogle Scholar
  120. Hayakawa T, Zyo K (1992) Ultrastructural study of ascending projections to the lateral mammillary nucleus of the rat. Anat Embryol 185: 547–557PubMedCrossRefGoogle Scholar
  121. Heidbreder CA, Groenewegen HJ (2003) The medial prefrontal cortex in the rat: evidence for a dorsoventral distinction based upon functional and anatomical characteristics. Neurosci Biobehav Rev 27: 555–579PubMedCrossRefGoogle Scholar
  122. Heimer L (2000) Basal forebrain in the context of schizophrenia. Brain Res Rev 31: 205–235PubMedCrossRefGoogle Scholar
  123. Heimer L, Wilson RD (1975) The subcortical projections of the allocortex: similarities in the neural associations of the hippocampus, the piriform cortex, and the neocortex. In: Santini M (ed) Golgi Centennial Symposium proceedings. Raven Press, New York, pp 177–193Google Scholar
  124. Heimer L, Harlan RE, Alheid GF, Garcia MM, de Olmos J (1997) Substantia innominata: a notion which impedes clinical-anatomical correlations in neuropsychiatric disorders. Neuroscience 76: 957–1006PubMedCrossRefGoogle Scholar
  125. Heimer L, Zahm DS, Alheid GF (1995) Basal ganglia. In: Paxinos G (ed) The rat nervous system. Academic Press, London, pp 579–628Google Scholar
  126. Herbert H, Moga MM, Saper CB (1990) Connections of the parabrachial nucleus with the nucleus of the solitary tract and the medullary reticular formation in the rat. J Comp Neurol 293: 540–580PubMedCrossRefGoogle Scholar
  127. Hermanson O, Blomqvist A (1996) Subnuclear localization of FOS-like immunoreactivity in the rat parabrachial nucleus after nociceptive stimulation. J Comp Neurol 368: 45–56PubMedCrossRefGoogle Scholar
  128. Hermanson O, Blomqvist A (1997) Preproencephalin messenger RNA-expressing neurons in the rat parabrachial nucleus: subnuclear organization and projections to the intralaminar thalamus. Neuroscience 81: 803–812PubMedCrossRefGoogle Scholar
  129. Herrero MT, Insausti R, Gonzalo LM (1991) Cortical projections from the laterodorsal and dorsal tegmental nuclei. A fluorescent retrograde tracing study in the rat. Neurosci Lett 123: 144–147PubMedCrossRefGoogle Scholar
  130. Hobohm C, Hartig W, Brauer K, Bruckner G (1998) Low expression of extracellular matrix components in rat brain stem regions containing modulatory aminergic neurons. J Chem Neuroanat 15: 135–142PubMedCrossRefGoogle Scholar
  131. Holstege G (1995) The basic, somatic, and emotional components of the motor system in mammals. In: Paxinos G (ed) The rat nervous system, Academic Press, London, pp 137–154Google Scholar
  132. Holstege G, Georgiadis JR (2004) The emotional brain: neural correlates of cat sexual behavior and human male ejaculation. Prog Brain Res 143: 39–45PubMedCrossRefGoogle Scholar
  133. Holt DJ, Graybiel AM, Saper CB (1997) Neurochemical architecture of the human striatum. J Comp Neurol 384: 1–25PubMedCrossRefGoogle Scholar
  134. Honda T, Semba K (1995) An ultrastructural study of cholinergic and non-cholinergic neurons in the laterodorsal and pedunculopontine tegmental nuclei in the rat. Neuroscience 68: 837–853PubMedCrossRefGoogle Scholar
  135. Hoover JE, Strick PL (1993) Multiple output channels in the basal ganglia. Science 259: 819–821PubMedCrossRefGoogle Scholar
  136. Horvath TL, 1 Peyron C, Diano S, Ivanov A, Aston-Jones G, Kilduff TS, Van den Pol AN (1999) Hypocretin (orexin) activation and synaptic innervation of the locus coeruleus noradrenergic system. J Comp Neurol 415: 145–159PubMedCrossRefGoogle Scholar
  137. Horvitz JC (2000) Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events. Neuroscience 96: 651–656PubMedCrossRefGoogle Scholar
  138. Huang XF, Tork I, Halliday GM, Paxinos G (1992) The dorsal, posterodorsal, and ventral tegmental nuclei: a cyto-and chemoarchitectonic study in the human. J Comp Neurol 318: 117–137PubMedCrossRefGoogle Scholar
  139. Inglis WL, Winn P (1995) The pedunculopontine tegmental nucleus: where the striatum meets the reticular formation. Prog Neurobiol 47: 1–29PubMedCrossRefGoogle Scholar
  140. Jakab RL, Leranth C (1995) Septum. In: Paxinos G (ed) The rat nervous system. Academic Press, London, pp 405–442Google Scholar
  141. Jobe PC, Dailey JW, Wernicke JF (1999) A noradrenergic and serotonergic hypothesis of the linkage between epilepsy and affective disorders. Crit Rev Neurobiol 13: 317–356PubMedGoogle Scholar
  142. Johnston JB (1923) Further contributions to the study of the evolution of the forebrain. J Comp Neurol 35: 337–481CrossRefGoogle Scholar
  143. Jongen-Relo AL, Amaral DG (1998) Evidence for a GABAergic projection from the central nucleus of the amygdala to the brainstem of the macaque monkey: a combined retrograde tracing and in situ hybridization study. Eur J Neurosci 10: 2924–2933PubMedCrossRefGoogle Scholar
  144. Jongen-Relo AL, Groenewegen HJ, Voorn P (1993) Evidence for a multi-compartmental histochemical organization of the nucleus accumbens in the rat. J Comp Neurol 337: 267–276PubMedCrossRefGoogle Scholar
  145. Jongen-Relo AL, Voorn P, Groenewegen HJ (1994) Immunohistochemical characterization of the shell and core territories of the nucleus accumbens in the rat. Eur J Neurosci 6: 1255–1264PubMedCrossRefGoogle Scholar
  146. Jongen-Relo AL, Kaufmann S, Feldon J (2002) A differential involvement of the shell and core subterritories of the nucleus accumbens of rats in attentional processes. Neuroscience 111: 95–109PubMedCrossRefGoogle Scholar
  147. Jongen-Relo AL, Kaufman S, Feldon J (2003) A differential involvement of the shell and core subterritories of the nucleus accumbens of rats in memory processes. Behav Neurosci 117: 150–168PubMedCrossRefGoogle Scholar
  148. Kahle W (1991) Nervensystem und Sinnesorgane. Taschenatlas der Anatomie, Bd 3 Thieme, StuttgartGoogle Scholar
  149. Kakeyama M, Yamanouchi K (1996) Inhibitory effect of baclofen on lordosis in female and male rats with dorsal raphe nucleus lesion or septal cut. Neuroendocrinology 63: 290–296PubMedCrossRefGoogle Scholar
  150. Kamali M, Oquendo MA, Mann JJ (2001) Understanding the neurobiology of suicidal behavior. Depress Anxiety 14: 164–176PubMedCrossRefGoogle Scholar
  151. Kandel ER, Schwartz JH, Jessell TM (1996) Principles of neural science. McGraw Hill, New YorkGoogle Scholar
  152. Karson CN, Garcia-Rill E, Biedermann J, Mrak RE, Husain MM, Skinner RD (1991) The brain stem reticular formation in schizophrenia. Psychiatry Res 40: 31–48PubMedCrossRefGoogle Scholar
  153. Kelly AB, Watts AG (1998) The region of the pontine parabrachial nucleus is a major target of dehydration-sensitive CRH neurons in the rat lateral hypothalamic area. J Comp Neurol 394: 48–63PubMedCrossRefGoogle Scholar
  154. Kessler JP, Moyse E, Kitabgi P, Vincent JP, Beaudet A (1987) Distribution of neurotensin binding sites in the caudal brainstem of the rat: a light microscopic radioautographic study. Neuroscience 23: 189–198PubMedCrossRefGoogle Scholar
  155. Kitamura T, Nagao S, Kunimoto K, Shirama K, Yamada J (2001) Cytoarchitectonic subdivisions of the parabrachial nucleus in the Japanese monkey (Macacus fuscatus) with special reference to spinoparabrachial fiber termials. Neurosci Res 39: 95–108PubMedCrossRefGoogle Scholar
  156. Kirouac GJ, Ganguly PK (1995) Topographical organization in the nucleus accumbens of afferents from the basolateral amygdala and efferents to the lateral hypothalamus. Neuroscience 67: 625–630PubMedCrossRefGoogle Scholar
  157. Kiyohara T, Miyata S, Nakamura T, Shido O, Nakashima T, Shibata M (1995) Differences in Fos expression in the rat brains between cold and warm ambient exposures. Brain Res Bull 38: 193–201PubMedCrossRefGoogle Scholar
  158. Kobayashi S, Nakamura Y (2003) Synaptic organization of the rat parafascicular nucleus, with special reference to its afferents from the superior colliculus and the pedunculopontine tegmental nucleus. Brain Res 980: 80–91PubMedCrossRefGoogle Scholar
  159. Koch M. (1999) The neurobiology of startle. Progr Neurobiol 59: 107–128CrossRefGoogle Scholar
  160. Koch M, Kungel M, Herbert H (1993) Cholinergic neurons in the pedunculopontine tegmental nucleus are involved in the mediation of prepulse inhibition of the acoustic startle response in the rat. Exp Brain Res 97: 71–82PubMedCrossRefGoogle Scholar
  161. Koch M., Schmid A, Schnitzler HU (2000) Role of nucleus accumbens dopamine D1 und D2 receptors in instrumental and Pavlovian paradigms of conditioned reward. Psychopharmacology 152: 67–73PubMedCrossRefGoogle Scholar
  162. Kocsis B, Di Prisco GV, Vertes RP (2001) Theta synchronization in the limbic system: the role of Gudden’s tegmental nuclei. Eur J Neurosci 13: 381–388PubMedGoogle Scholar
  163. Kolmac C, Mitrofanis J (1999) Organization of the basal forebrain projection to the thalamus in rats. Neurosci Lett 272: 151–154PubMedCrossRefGoogle Scholar
  164. Kolmac C, Mitrofanis J (2000) Organization of brain stem afferents to the ventral lateral geniculate nucleus of rats. Vis Neurosci 17: 313–318PubMedCrossRefGoogle Scholar
  165. Kolmac CI, Power BD, Mitrofanis J (1998) Patterns of connections between zona incerta and brainstem in rats. J Comp Neurol 396: 544–555PubMedCrossRefGoogle Scholar
  166. Kornhuber HH, Deecke L (1965) Hirnpotentialänderungen bei Willkürbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiale. Pflüger’s Arch Physiol 284: 1–17CrossRefGoogle Scholar
  167. Krahl SE, Clark KB, Smith DC, Browning RA (1998) Locus coeruleus lesions suppress the seizure-attenuating effects of vagus nerve stimulation. Epilepsia 39: 709–714PubMedCrossRefGoogle Scholar
  168. Krauthamer GM, Grunwerg BS, Krein H (1995) Putative cholinergic neurons of the pedunculopontine tegmental nucleus projecting to the superior colliculus consist of sensory responsive and unresponsive populations which are functionally distinct from other mesopontine neurons. Neuroscience 69: 507–517PubMedCrossRefGoogle Scholar
  169. Krout KE, Belzer RE, Loewy AD (2002) Brainstem projections to midline and intralaminar thalamic nuclei of the rat. J Comp Neurol 448: 53–101PubMedCrossRefGoogle Scholar
  170. Lang W, Cheyne D, Kristeva R, Beisteiner R, Lindinger G, Deecke L (1991) Three-dimensional localization of SMA activity preceding voluntary movement. Exp Brain Res 87: 688–695PubMedCrossRefGoogle Scholar
  171. Lara JP, Dawid-Milner MS, Lopez MV, Montes C, Spyer KM, Gonzalez-Baron S (2002) Laryngeal effects of stimulation of rostral and ventral pons in the anaesthetized rat. Brain Res 934: 97–106PubMedCrossRefGoogle Scholar
  172. Lavoie B, Parent A (1994a) Pedunculopontine nucleus in the squirrel monkey: projections to the basal ganglia as revealed by anterograde tract tracing methods. J Comp Neurol 344: 210–231PubMedCrossRefGoogle Scholar
  173. Lavoie B, Parent A (1994b) Pedunculopontine nucleus in the squirrel monkey: cholinergic and glutamatergic projections to the substantia nigra. J Comp Neurol 344: 232–241PubMedCrossRefGoogle Scholar
  174. LeDoux JE (1998) Das Netz der Gefühle. Wie Emotionen entstehen. Hanser, MünchenGoogle Scholar
  175. LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23: 155–184PubMedCrossRefGoogle Scholar
  176. Leite-Panissi CR, Coimbra NC, Menescal-de-Oliveira L (2003) The cholinergic stimulation of the central amygdala modifying the tonic immobility response and antinociception in guinea pigs depends on the ventrolateral periaqueductal gray. Brain Res Bull 60: 167–178PubMedCrossRefGoogle Scholar
  177. Levant B (1998) Differential distribution of D3 dopamine receptors in the brains of several mammalian species. Brain Res 800: 269–274PubMedCrossRefGoogle Scholar
  178. Levita L, Mania I, Rainnie DG (2003) Subtypes of substance P receptor immunoreactive interneurons in the rat basolateral amygdala. Brain Res 981: 41–51PubMedCrossRefGoogle Scholar
  179. Li YH, Ku YH (2002) Involvement of rat lateral septum acetylcholine pressor system in central amygdaloid nucleus emotional pressor circuit. Neurosci Lett 323: 60–64PubMedCrossRefGoogle Scholar
  180. Linke R, Braune G, Schwegler H (2000) Differential projection of the posterior paralaminar thalamic nuclei to the amygdaloid complex in the rat. Exp Brain Res 134: 520–532PubMedCrossRefGoogle Scholar
  181. Loughlin SE, Foote SL, Fallon JH (1982) Locus coeruleus projections to the cortex: topography, morphology and collateralization. Brain Res Bull 9: 287–294PubMedCrossRefGoogle Scholar
  182. Loughlin SE, Leslie FM, Fallon JH (1995) Endogenous opioid systems. In: Paxinos G (ed) The rat nervous system. Academic Press, London, pp 975–1001Google Scholar
  183. MacLean P (1952) Some psychiatric implications of physiological studies on frontotemporal portion of limbic system. Electroenceph Clin Neurophysiol 4: 407–418PubMedCrossRefGoogle Scholar
  184. MacLean P (1990) The Triune Brain in Evolution. Plenum Press, New YorkGoogle Scholar
  185. Mansour A, Burke S, Pavlic RJ, Akil H, Watson SJ (1996) Immunohistochemical localization of the cloned k 1 receptor in the rat CNS and pituitary. Neuroscience 71: 671–690PubMedCrossRefGoogle Scholar
  186. McClure SM, Daw ND, Montague PR (2003) A computational substrate for incentive salience. Trends Neurosci 26: 423–428PubMedCrossRefGoogle Scholar
  187. McDonald AJ (1996) Glutamate and aspartate immunoreactive neurons of the rat basolateral amygdala: colocalization of excitatory amino acids and projections to the limbic circuit. J Comp Neurol 365: 367–379PubMedCrossRefGoogle Scholar
  188. McDonald AJ (1998) Cortical pathways to the mammalian amygdala. Progr Neurobiol 55: 257–332CrossRefGoogle Scholar
  189. McDonald AJ (2003) Is there an amygdala and how far does it extend ? An anatomical perspective. Ann NY Acad Sci 985: 1–21PubMedCrossRefGoogle Scholar
  190. McDonald AJ, Betette RL (2001) Parvalbumin-containing neurons in the rat basolateral amygdala: morphology and co-localization of calbindin-D(28k). Neuroscience 102: 413–425PubMedCrossRefGoogle Scholar
  191. McDonald AJ, Mascagni F (1997) Projections of the lateral entorhinal cortex to the amygdala: a Phaseolus vulgaris leucoagglutinin study in the rat. Neuroscience 77: 445–459PubMedCrossRefGoogle Scholar
  192. McDonald AJ, Muller JF, Mascagni F (2002) GABAergic innervation of alpha type II calcium/calmodulin-dependent protein kinase immunoreactive pyramidal neurons in the rat basolateral amygdala. J Comp Neurol 446: 199–218PubMedCrossRefGoogle Scholar
  193. McGaugh J, Ferry B, Vazdarjanova A, Roozendaal B (2000) Amygdala: role in modulation of memory storage. In: Aggleton JP (ed) The amygdala. A functional analysis. Oxford University Press, New York, pp 391–423Google Scholar
  194. McKenna JT, Vertes RP (2001) Collateral projections from the median raphe nucleus to the medial septum and hippocampus. Brain Res Bull 54: 619–630PubMedCrossRefGoogle Scholar
  195. Meredith GE, Pattiselanno A, Groenewegen JH, Haber SN (1996) Shell and core in monkey and human nucleus accumbens identified with antibodies to calbindin-D28k. J Comp Neurol 365: 628–639PubMedCrossRefGoogle Scholar
  196. Mesulam MM, Mufson EJ, Levey AI, Wainer BH (1983) Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nucleus, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J Comp Neurol 214: 170–197PubMedCrossRefGoogle Scholar
  197. Millan MJ (2003) The neurobiology and control of anxious states. Prog Neurobiol 70: 83–244PubMedCrossRefGoogle Scholar
  198. Mintz EM, van den Pol AN, Casano AA, Albers HE (2001) Distribution of hypocretin (orexin) immunoreactivity in the central nervous system of Syrian hamsters (Mesocricetus auratus). J Chem Neuroanat 21: 225–238PubMedCrossRefGoogle Scholar
  199. Miyata S, Ishiyama M, Shido O, Nakashima T, Shibata M, Kiyohara T (1995) Central mechanism of neural activation with cold acclimation of rats using Fos immunohistochemistry. Neurosci Res 22: 209–218PubMedCrossRefGoogle Scholar
  200. Moga MM, Saper CB (1994) Neuropeptide-immunoreactive neurons projecting to the paraventricular hypothalamic nucleus in the rat. J Comp Neurol 346: 137–150PubMedCrossRefGoogle Scholar
  201. Moga MM, Saper CB, Gray TS (1990a) Neuropeptide organization of the hypothalamic projection to the parabrachial nucleus in the rat. J Comp Neurol 295: 662–682PubMedCrossRefGoogle Scholar
  202. Moga MM, Herbert H, Hurley KM, Yasui Y, Gray TS, Saper CB (1990b) Organization of cortical, basal forebrain, and hypothalamic afferents to the parabrachial nucleus in the rat. J Comp Neurol 295: 624–661PubMedCrossRefGoogle Scholar
  203. Montaron MF, Deniau JM, Menetrey A, Glowinski J, Thierry AM (1996) Prefrontal cortex inputs of the nucleus accumbens-nigrothalamic circuit. Neuroscience 71: 371–382PubMedCrossRefGoogle Scholar
  204. Moore RY, Whone AL, McGowan S, Brooks DJ (2003) Monoamine neuron innervation of the normal human brain: an 18F-DOPA PET study. Brain Res 982: 137–145PubMedCrossRefGoogle Scholar
  205. Morin LP, Meyer-Bernstein EL (1999) The ascending serotonergic system in the hamster: comparison with projections of the dorsal and median raphe nuclei. Neuroscience 91: 81–105PubMedCrossRefGoogle Scholar
  206. Morris JS, Ohman A, Dolan RJ (1999) A subcortical pathway to the right amygdala mediating ≫unseen≪ fear. Proc Natl Acad Sci USA 96: 1680–1685PubMedCentralPubMedCrossRefGoogle Scholar
  207. Morrison JH, Molliver ME, Grzanna R, Coyle JT (1981) The intracortical trajectory of the coeruleocortical projection in the rat: a tangentially organized cortical afferent. Neuroscience 6: 139–158PubMedCrossRefGoogle Scholar
  208. Mouton LJ, Holstege G (2000) Segmental and laminar organization of the spinal neurons projecting to the periaqueductal gray (PAG) in the cat suggests the existence of at least five separate clusters of spino-PAG neurons. J Comp Neurol 428: 389–410PubMedCrossRefGoogle Scholar
  209. Muller JF, Mascagni F, McDonald AJ (2003) Synaptic connections of distinct interneuronal subpopulations in the rat basolateral amygdalar nucleus. J Comp Neurol 456: 217–236PubMedCrossRefGoogle Scholar
  210. Nakaya Y, Kaneko T, Shigemoto R, Nakanishi S, Mizuno N (1994) Immunohistochemical localization of substance P receptor in the central nervous system of the adult rat. J Comp Neurol 347: 249–274PubMedCrossRefGoogle Scholar
  211. Neuhuber W (1994) In: Drenckhahn D, Zenker W (Hrsg) Benninghoff Anatomie, Bd 2. Urban & Schwarzenberg, München, S 471–519Google Scholar
  212. Nieuwenhuys R (1985) Chemoarchitecture of the brain. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  213. Nieuwenhuys R, Voogd J, van Huijzen C (1991) Das Zentralnervensystem des Menschen. Springer, Berlin, Heidelberg, New YorkCrossRefGoogle Scholar
  214. Nieuwenhuys R, ten Donkelaar HJ, Nicholson C (1998) The central nervous system of vertebrates, vol 3, Springer, Berlin, Heidelberg, New YorkCrossRefGoogle Scholar
  215. Norgren R (1995) Gustatory system. In: Paxinos G (ed) The rat nervous system. Academic Press, London, pp 751–771Google Scholar
  216. O’Doherty J, Dayan P, Schultz J, Deichmann R, Friston K, Dolan RJ (2004) Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science 304: 452–454PubMedCrossRefGoogle Scholar
  217. Oakman SA, Faris PL, Kerr PE, Cozzari C, Hartman BK (1995) Distribution of pontomesencephalic cholinergic neurons projecting to substantia nigra differs significantly from those projecting to ventral tegmental area. J Neurosci 15: 5859–5869PubMedGoogle Scholar
  218. Ochsner KN, Bunge SA, Gross JJ, Gabrieli JD (2002) Rethinking feelings: an FMRI study of the cognitive regulation of emotion. J Cogn Neurosci 14: 1215–1229PubMedCrossRefGoogle Scholar
  219. Olucha-Bordonau FE, Teruel V, Barcia-Gonzalez J, Ruiz-Torner A, Valverde-Navarro AA, Martinez-Soriano F (2003) Cytoarchitecture and efferent projections of the nucleus incertus of the rat. J Comp Neurol 464: 62–97PubMedCrossRefGoogle Scholar
  220. Otake K, Reis DJ, Ruggiero DA (1994) Afferents to the midline thalamus issue collaterals to the nucleus tractus solitarii: an anatomical basis for thalamic and visceral reflex integration. J Neurosci 14: 5694–5707PubMedGoogle Scholar
  221. Pahapill PA, Lozano AM (2000) The pedunculopontine nucleus and Parkinson’s disease. Brain 123: 1767–1783PubMedCrossRefGoogle Scholar
  222. Panigrahy A, Sleeper LA, Assmann S, Rava LA, White WF, Kinney HC (1998) Developmental changes in heterogeneous patterns of neurotransmitter receptor binding in the human interpeduncular nucleus. J Comp Neurol. 390: 322–332PubMedCrossRefGoogle Scholar
  223. Panksepp J (1998): Affective neuroscience. The foundations of human and animal emotions. Oxford University Press, New YorkGoogle Scholar
  224. Papez JW (1937) A proposed mechanism of emotion. Arch Neurol Psychiatry 38: 725–743CrossRefGoogle Scholar
  225. Paré D, Collins DR (2000) Neuronal correlates of fear in the lateral amygdala: multiple extracellular recordings in conscious cats. J Neurosci 20: 2701–2710PubMedGoogle Scholar
  226. Paré D, Collins WR, Pelletier JG (2002) Amygdala oscillations and the consolidation of emotional memories. Trends Cogn Sci 6: 306–314PubMedCrossRefGoogle Scholar
  227. Paré D, Quirk GJ, LeDoux JE (2004) New vistas on amygdala networks in conditioned fear. J Neurophysiol 92: 1–9PubMedCrossRefGoogle Scholar
  228. Passingham R (1993) The frontal lobes and voluntary action. Oxford University Press, OxfordGoogle Scholar
  229. Paxinos G, Watson C (1997) The rat brain in stereotaxic coordinates. Academic Press, San DiegoGoogle Scholar
  230. Pesini P, Pego-Reigosa R, Tramu G, Covenas R (2001) Distribution of α-neoendorphin immunoreactivity in the diencephalon and the brainstem of the dog. J Chem Neuroanat 22: 251–262PubMedCrossRefGoogle Scholar
  231. Petrovich GD, Gallagher M (2003) Amygdala subsystems and control of feeding behavior by learned cues. Ann NY Acad Sci 985: 251–262PubMedCrossRefGoogle Scholar
  232. Petrovich GD, Risold PY, Swanson LW (1996) Organization of projections from the basomedial nucleus of the amygdala: a PHAL study in the rat. J Comp Neurol 374: 387–420PubMedCrossRefGoogle Scholar
  233. Petrovicky P (1989) The nucleus Koelliker-Fuse (K-F) and parabrachial nuclear complex (PBNC) in man. Location, cytoarchitectonics and terminology in embryonic and adult periods, and comparison with other mammals. J Hirnforsch 30: 551–563PubMedGoogle Scholar
  234. Petrovicky P, Kadlecova O, Masek K (1981) Mutual connections of the raphe system and hypothalamus in relation to fever. Brain Res Bull 7: 131–149PubMedCrossRefGoogle Scholar
  235. Peyron C, Luppi PH, Fort P, Rampon C, Jouvet M (1996) Lower brainstem catecholamine afferents to the rat dorsal raphe nucleus. J Comp Neurol 364: 402–413PubMedCrossRefGoogle Scholar
  236. Peyron C, Tighe DK, van den Pol AN, de Lecea L, Heller HC, Sutcliffe JG, Kilduff TS (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18: 9996–10008PubMedGoogle Scholar
  237. Pikkarainen M, Pitkänen A (2001) Projections from the lateral, basal and accessory basal nuclei of the amygdala to the perirhinal and postrhinal cortices in rat. Cereb Cortex 11: 1064–1082PubMedCrossRefGoogle Scholar
  238. Pitkänen A (2000) Connectivity of the rat amygdaloid complex. In: Aggleton JP (ed) The amygdala. A functional analysis. Oxford University Press, New York, pp 31–115Google Scholar
  239. Pitkänen A, Amaral DG (1994) The distribution of GABAergic cells, fibers, and terminals in the monkey amygdaloid complex: an immunhistochemical and in situ hybridization study. J Neurosci 14: 2200–2224PubMedGoogle Scholar
  240. Pitkänen A, Amaral DG (1998) Organization of the intrinsic connections of the monkey amygdaloid complex: projections originating in the lateral nucleus. J Comp Neurol 398: 431–458PubMedCrossRefGoogle Scholar
  241. Pitkänen A, Stefanacci L, Farb CR, Go GG, LeDoux JE, Amaral DG (1995) Intrinsic connections of the rat amygdaloid complex: projections originating in the lateral nucleus. J Comp Neurol 356: 288–310PubMedCrossRefGoogle Scholar
  242. Pitkänen A, Savander V, LeDoux JE (1997) Organization of intra-amygdaloid circuitries in the rat: an emerging framework for understanding functions of the amygdala. Trends Neurosci 20: 517–523PubMedCrossRefGoogle Scholar
  243. Potter E, Sutton S, Donaldson C et al (1994) Distribution of corticotropin-releasing factor receptor mRNA in the rat brain and pituitary. Proc Natl Acad Sci USA 91: 8777–8781PubMedCentralPubMedCrossRefGoogle Scholar
  244. Price JL (1995) Thalamus. In: Paxinos G (ed) The rat nervous system. Academic Press, London, pp 629–648Google Scholar
  245. Price RD (2000) Psychological and neural mechanisms of the affective dimension of pain. Science 288: 1769–1772PubMedCrossRefGoogle Scholar
  246. Price JL, Russchen FT, Amaral DG (1987) The limbic region. II. The amygdaloid complex. In: Hökfelt T, Björklund A, Swanson LW (eds) Handbook of chemical neuroanatomy, vol 5, Elsevier, Amsterdam, pp 279–388Google Scholar
  247. Rao VL, Butterworth RF (1996) Regional distribution of binding sites for the nitric oxide synthase inhibitor L-[3H]nitroarginine in rat brain. Neurochem Res 21: 355–359PubMedCrossRefGoogle Scholar
  248. Recordati G (2003) A thermodynamic model of the sympathetic and parasympathetic nervous systems. Auton Neurosci 103: 1–12PubMedCrossRefGoogle Scholar
  249. Riedel A, Hartig W, Seeger G, Gartmer U, Brauer K, Arendt T (2002) Principles of rat subcortical forebrain organization: a study using histological techniques and multiple fluorescence labeling. J Chem Neuroanat 23: 75–104PubMedCrossRefGoogle Scholar
  250. Risold PY, Swanson LW (1997) Connections of the rat lateral septal complex. Brain Res Rev 24: 115–195PubMedCrossRefGoogle Scholar
  251. Rivest S, Laflamme N, Nappi RE (1995) Immune challenge and immobilization stress induce transcription of the gene encoding the CRF receptor in selective nuclei of the rat hypothalamus. J Neurosci 15: 2680–2695PubMedGoogle Scholar
  252. Rolls ET (1999) The brain and emotion. Oxford University Press, New YorkGoogle Scholar
  253. Roth G (2003) Fühlen, Denken, Handeln. Wie das Gehirn unser Verhalten steuert. Suhrkamp, FrankfurtGoogle Scholar
  254. Roth G, Grunwald W, Mühlenbrock-Lenter S, Laberge F (2004) Morphology and axonal projection pattern of neurons in the telencephalon of the fire-bellied toad Bombina orientalis. J Comp Neurol 478: 35–61PubMedCrossRefGoogle Scholar
  255. Samson RD, Paré D (2005) Activity-dependent synaptic plasticity in the central nucleus of the amygdala. J Neurosci 25: 1847–1855PubMedCrossRefGoogle Scholar
  256. Santos NR, Huston JP, Brandao ML (2003) Blockade of histamine H2 receptors of the periaqueductal gray and inferior colliculus induces fear-like behaviors. Pharmacol Biochem Behav 75: 25–33PubMedCrossRefGoogle Scholar
  257. Saper CB (1995) Central autonomic system. In: Paxinos G (ed) The rat nervous system. Academic Press, London, pp 107–135Google Scholar
  258. Saxon DW, Hopkins DA (1998) Efferent and collateral organization of paratrigeminal nucleus projections: an anterograde and retrograde fluorescent tracer study in the rat. J Comp Neurol 402: 93–110PubMedCrossRefGoogle Scholar
  259. Schuerger RJ, Balaban CD (1999) Organization of the coeruleovestibular pathway in rats, rabbits, and monkeys. Brain Res Rev 30: 189–217PubMedCrossRefGoogle Scholar
  260. Schultz W (1998) Predictive reward signals of dopamine neurons. J Neurophysiol 80: 1–27PubMedGoogle Scholar
  261. Seidenbecher T, Laxmi TR, Stork O, Pape HC (2003) Amygdalar and hippocampal theta rhythm synchronization during fear memory retrieval. Science 301: 846–850PubMedCrossRefGoogle Scholar
  262. Semba K, Fibiger HC (1992) Afferent connections of the laterodorsal and pedunculopontine tegmental nuclei in the rat: a retro-and anterograde transport and immunohistochemical study. J Comp Neurol 323: 387–410PubMedCrossRefGoogle Scholar
  263. Seth P, Cheeta S, Tucci S, File SE (2002) Nicotinic-serotonergic interactions in brain and behaviour. Pharmacol Biochem Behav 71: 795–805PubMedCrossRefGoogle Scholar
  264. Sewards TV, Sewards MA (2003) Representations of motivational drives in medial cortex, medial thalamus, hypothalamus and midbrain. Brain Res Bull 61: 25–49PubMedCrossRefGoogle Scholar
  265. Shammah-Lagnado SJ, Alheid GF, Heimer L (1999) Afferent connections of the interstitial nucleus of the posterior limb of the anterior commissure and adjacent amygdalostriatal transition area in the rat. Neuroscience 94: 1097–1123PubMedCrossRefGoogle Scholar
  266. Shammah-Lagnado SJ, Beltramino CA, McDonald AJ et al (2000) Supracapsular bed nucleus of the stria terminalis contains central and medial extended amydala elements: evidence from anterograde and retrograde tracing experiments in the rat. J Comp Neurol 422: 533–555PubMedCrossRefGoogle Scholar
  267. Shammah-Lagnado SJ, Alheid GF, Heimer L (2001) Striatal and central extended amydala parts of the interstitial nucleus of the posterior limb of the anterior commissure: evidence from tract-tracing techniques in the rat. J Comp Neurol 439: 104–126PubMedCrossRefGoogle Scholar
  268. Shi CJ, Cassell MD (1998a) Cascade projections from somatosensory cortex to the rat basolateral amygdala via the parietal insular cortex. J Comp Neurol 399: 469–491PubMedCrossRefGoogle Scholar
  269. Shi CJ, Cassell MD (1998b) Cortical, thalamic, and amygdaloid connections of the anterior and posterior insular cortices. J Comp Neurol 399: 440–468PubMedCrossRefGoogle Scholar
  270. Shi C, Davis M (1999) Pain pathways involved in fear conditioning measured with fear-potentiated startle: lesion studies. J Neurosci 19: 420–430PubMedGoogle Scholar
  271. Shibata H (1987) Ascending projections to the mammillary nuclei in the rat: a study using retrograde and anterograde transport of wheat germ agglutinin conjugated to horseradish peroxidase. J Comp Neurol 264: 205–215PubMedCrossRefGoogle Scholar
  272. Shibata H, Suzuki T, Matsushita M (1986) Afferent projections to the interpeduncular nucleus in the rat, as studied by retrograde and anterograde transport of wheat germ agglutinin conjugated to horseradish peroxidase. J Comp Neurol 248: 272–284PubMedCrossRefGoogle Scholar
  273. Shidara M, Richmond BJ (2002) Anterior cingulate: single neuronal signals related to degree of reward expectancy. Science 296: 1709–1711PubMedCrossRefGoogle Scholar
  274. Shink E, Sibide M, Smith Y (1997) Efferent connections of the internal globus pallidus in the squirrel monkey: II. Topography and synaptic organization of pallidal efferents to the pedunculopontine nucleus. J Comp Neurol 382: 348–363PubMedCrossRefGoogle Scholar
  275. Shipley MT, Halloran FJ, de la Torre J (1985) Surprisingly rich projections from locus coeruleus to the olfactory bulb in rat. Brain Res 329: 294–299PubMedCrossRefGoogle Scholar
  276. Shipley MT, Fu L, Ennis M, Liu WL, Aston-Jones G (1996) Dendrites of locus coeruleus neurons extend preferentially into two pericoerulear zones. J Comp Neurol 365: 56–68PubMedCrossRefGoogle Scholar
  277. Shughrue PJ, Lane MV, Merchenthaler I (1996) In situ hybridization analysis of the distribution of neurokinin-3 mRNA in the rat central nervous system. J Comp Neurol 372: 395–414PubMedCrossRefGoogle Scholar
  278. Sibide M, Bevan MD, Bolam JP, Smith Y (1997) Efferent connections of the internal globus pallidus in the quirrel monkey: I. Topography and synaptic organization of the pallidothalamic projection. J Comp Neurol 382: 323–347CrossRefGoogle Scholar
  279. Simerly RB (1995) Anatomical substrates of hypothalamic integration. In: Paxinos G (ed) The rat nervous system. Academic Press, London, pp 353–376Google Scholar
  280. Simonyan K, Jürgens U (2003) Efferent subcortical projections of the laryngeal motorcortex in the rhesus monkey. Brain Res 974: 43–59PubMedCrossRefGoogle Scholar
  281. Simpson KL, Altman DW, Wang L, Kirifides ML, Lin RC, Waterhouse BD (1997) Lateralization and functional organization of the locus coeruleus projection to the trigeminal somatosensory pathway in rat. J Comp Neurol 385: 135–147PubMedCrossRefGoogle Scholar
  282. Simpson KL, Waterhouse BD, Lin RC (1999) Origin, distribution, and morphology of galaninergic fibers in the rodent trigeminal system. J Comp Neurol 411: 524–534PubMedCrossRefGoogle Scholar
  283. Skinner RD, Kinjo N, Henderson V, Garcia-Rill E (1990) Locomotor projections from the pedunculopontine nucleus to the medioventral medulla. Neuroreport 1: 207–210PubMedCrossRefGoogle Scholar
  284. Sofroniew MV, Priestley JV, Consolazione A, Eckenstein F, Cuello AC (1985) Cholinergic projections from the midbrain and pons to the thalamus in the rat, identified by combined retrograde tracing and choline acetyltransferase immunohistochemistry. Brain Res 329: 213–223PubMedCrossRefGoogle Scholar
  285. Spanagel R, Weiss F (1999) The dopamine hypothesis of reward: past and current status. Trends Neurosci 22: 521–527PubMedCrossRefGoogle Scholar
  286. Stefanacci L, Amaral DG (2000) Topographic organization of cortical inputs to the lateral nucleus of the macaque monkey amygdala. A retrograde tracing study. J Comp Neurol 421: 52–79PubMedCrossRefGoogle Scholar
  287. Stefanacci L, Amaral DG (2002) Some observations on cortical inputs to the macaque monkey amygdala: an anterograde tracing study. J Comp Neurol 451: 301–323PubMedCrossRefGoogle Scholar
  288. Stefanacci L, Suzuki WA, Amaral DG (1996) Organization of connections between the amygdaloid complex and the perirhinal and parahippocampal cortices in macaque monkeys. J Comp Neurol 375: 552–582PubMedCrossRefGoogle Scholar
  289. Steinbusch HW, Nieuwenhuys R, Verhofstad AA, Van der Kooy D (1981) The nucleus raphe dorsalis of the rat and its projection upon the caudatoputamen. A combined cytoarchitectonic, immunohistochemical and retrograde transport study. J Physiol 77: 157–174Google Scholar
  290. Steininger TL, Rye DB, Wainer BH (1992) Afferent projections to the cholinergic pedunculopontine tegmental nucleus and adjacent midbrain extrapyramidal area in the albino rat. I. Retrograde tracing studies. J Comp Neurol 321: 515–543PubMedCrossRefGoogle Scholar
  291. Steininger TL, Wainer BH, Rye DB (1997a) Ultrastructural study of cholinergic and noncholinergic neurons in the pars compacta of the rat pedunculopontine tegmental nucleus. J Comp Neurol 382: 285–301PubMedCrossRefGoogle Scholar
  292. Steininger TL, Wainer BH, Blakely RD, Rye DB (1997b) Serotonergic dorsal raphe nucleus projections to the cholinergic and noncholinergic neurons of the pedunculopontine tegmental region: a light and electron microscopic anterograde tracing and immunohistochemical study. J Comp Neurol 382: 302–322PubMedCrossRefGoogle Scholar
  293. Steininger TL, Gong H, McGinty D, Szymusiak R (2001) Subregional organization of preoptic area/anterior hypothalamic projections to arousal-related monoaminergic cell groups. J Comp Neurol 429: 638–653PubMedCrossRefGoogle Scholar
  294. Stern CE, Passingham RE (1996) The nucleus accumbens in monkeys (Macaca fascicularis): II. Emotion and motivation. Behav Brain Res 75: 179–193PubMedCrossRefGoogle Scholar
  295. Sugita S, Tokunaga A, Otani K, Terasawa K (1985) Ascending projections to the lateral thalamic nuclei from the substantia grisea centralis in the rat: a retrograde WGA-HRP study. Neurosci Res 2: 189–199PubMedCrossRefGoogle Scholar
  296. Sutin EL, Jacobowitz DM (1988) Immunocytochemical localization of peptides and other neurochemicals in the rat laterodorsal tegmental nucleus and adjacent area. J Comp Neurol 270: 243–270PubMedCrossRefGoogle Scholar
  297. Swanson LW (1976) The locus coeruleus: A cytoarchitectonic, Golgi and immunohistochemical study in the albino rat. Brain Res 110: 39–56PubMedCrossRefGoogle Scholar
  298. Swanson LW (2003) The amygdala and its place in the cerebral hemisphere. Ann NY Acad Sci 985: 174–184PubMedCrossRefGoogle Scholar
  299. Swanson LW, Petrovitch GD (1998) What is the amygdala? Trends Neurosci 21: 323–331PubMedCrossRefGoogle Scholar
  300. Thompson RH, Swanson LW (1998) Organization of inputs to the dorsomedial nucleus of the hypothalamus: a re-examination with Fluorogold and PHAL in the rat. Brain Res Rev 27: 89–118PubMedCrossRefGoogle Scholar
  301. Tremblay L, Schultz W (1999) Relative reward preference in primate orbitofrontal cortex. Nature 398: 704–708PubMedCrossRefGoogle Scholar
  302. Tsukahara S, Ezawa N, Yamanouchi K (2003) Neonatal estrogen decreases neural density of the septum-midbrain central gray connection underlying the lordosis-inhibiting system in female rats. Neuroendocrinology 78: 226–233PubMedCrossRefGoogle Scholar
  303. Tzschentke TM, Schmidt WJ (2000) Functional relationship among medial prefrontal cortex, nucleus accumbens, and ventral tegmental area in locomotion and reward. Crit Rev Neurobiol 14: 131–142PubMedCrossRefGoogle Scholar
  304. Ungless MA, Magill PJ, Bolam JP (2004) Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli. Science 303: 2040–2042PubMedCrossRefGoogle Scholar
  305. Ursin R (2002) Serotonin and sleep. Sleep Med Rev 6: 55–69PubMedCrossRefGoogle Scholar
  306. Uylings HB, Groenewegen HJ, Kolb B (2003) Do rats have a prefrontal cortex? Behav Brain Res 146: 3–17PubMedCrossRefGoogle Scholar
  307. van Bockstaele EJ (1998) Morphological substrates underlying opioid, epinephrine and γ-aminobutyric acid inhibitory actions in the rat locus coeruleus. Brain Res Bull 47: 1–15PubMedCrossRefGoogle Scholar
  308. van Bockstaele EJ, Aston-Jones G, Pieribone VA, Ennis M, Shipley MT (1991) Subregions of the periaqueductal gray topographically innervate the rostral medulla in the rat. J Comp Neurol 309: 305–327PubMedCrossRefGoogle Scholar
  309. van Bockstaele EJ, Saunders A, Telegan P, Page M (1999) Localization of μ-opioid receptors to locus coeruleus-projecting neurons in the rostral medulla: morphological substrates and synaptic organization. Synapse 34: 154–167PubMedCrossRefGoogle Scholar
  310. van Bockstaele EJ, Bajic D, Proudfit H, Valentino RJ (2001) Topographic architecture of stress-related pathways targeting the noradrenergic locus coeruleus. Physiol Behav 73: 273–283PubMedCrossRefGoogle Scholar
  311. Varani K, Beani L, Bianchi C, Borea PA, Simonato M (1995) Changes in [3H]-UK 14304 binding to α2-adrenoceptors in morphine-dependent guinea-pigs. Br J Pharmacol 116: 3125–3132PubMedCentralPubMedCrossRefGoogle Scholar
  312. Vertes RP (1991) A PHA-L analysis of ascending projections of the dorsal raphe nucleus in the rat. J Comp Neurol 313: 643–668PubMedCrossRefGoogle Scholar
  313. Vertes, RP (2004) Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 51: 32–58PubMedCrossRefGoogle Scholar
  314. Vertes RP, Fortin WJ, Crane AM (1999) Projections of the median raphe nucleus in the rat. J Comp Neurol 407: 555–582PubMedCrossRefGoogle Scholar
  315. Viggiano D, Vallone D, Ruocco LA, Sadile AG (2003) Behavioural, pharmacological, morpho-functional molecular studies reveal a hyperfunctioning mesocortical dopamine system in an animal model of attention deficit and hyperactivity disorder. Neurosci Biobehav Rev 27: 683–689PubMedCrossRefGoogle Scholar
  316. Voytko ML (1996) Cognitive functions of the basal forebrain cholinergic system in monkeys: memory or attention? Behav Brain Res 75: 13–25PubMedCrossRefGoogle Scholar
  317. Vrang N, Mrosovsky N, Mikkelsen JD (2003) Afferent projections to the hamster intergeniculate leaflet demonstrated by retrograde and anterograde tracing. Brain Res Bull 59: 267–288PubMedCrossRefGoogle Scholar
  318. Walker DL, Davis M (1997) Double dissociation between the involvement of the bed nucleus of the stria terminalis and the central nucleus of the amygdala in light-enhanced versus fear-potentiated startle. J Neurosci 17: 9375–9938PubMedGoogle Scholar
  319. Willis WD, Westlund KN (1997) Neuroanatomy of the pain system and of the pathways that modulate pain. J Clin Neurophysiol 14: 2–31PubMedCrossRefGoogle Scholar
  320. Winston JS, Stranger BA, O’Doherty J, Dolan RJ (2002) Automatic and intentional brain responses during evaluation of trustworthiness of faces. Nature Neurosci 5: 77–192CrossRefGoogle Scholar
  321. Wirtshafter D, Stratford TR (1993) Evidence for GABAergic projections from the tegmental nuclei of Gudden to the mammillary body in the rat. Brain Res 630: 188–194PubMedCrossRefGoogle Scholar
  322. Yokota S, Tsumori T, Ono K, Yasui Y (2001) Phrenic motoneurons receive monosynaptic inputs from the Kolliker-Fuse nucleus: a light-and electron-microscopic study in the rat. Brain Res 888: 330–335PubMedCrossRefGoogle Scholar
  323. Yoshida A, Chen K, Moritani M, Yabuta NH, Nagase Y, Takemura M, Shigenaga Y (1997) Organization of the descending projections from the parabrachial nucleus to the trigeminal sensory nuclear complex and spinal dorsal horn in the rat. J Comp Neurol 383: 94–111PubMedCrossRefGoogle Scholar
  324. Zahm DS (1998) Is the caudomedial shell of the nucleus accumbens part of the extended amygdala? Crit Rev Neurobiol 12: 245–265PubMedCrossRefGoogle Scholar
  325. Zahm DS (1999) Functional-anatomical implications of the nucleus accumbens core and shell subterritories. Ann NY Acad Sci 877: 113–128PubMedCrossRefGoogle Scholar
  326. Zald DH (2003) The human amygdala and the emotional evaluation of sensory stimuli. Brain Res Rev 41: 88–123PubMedCrossRefGoogle Scholar
  327. Zilles K, Wree A (1995) Cortex: areal and laminar structure. In: Paxinos G (ed) The rat nervous system. Academic Press, London, pp 649–685Google Scholar

Copyright information

© Springer Medizin Verlag Heidelberg 2006

Authors and Affiliations

  • Gerhard Roth
    • 1
  • Ursula Dicke
    • 1
  1. 1.Institut für HirnforschungUniversität BremenBremen

Personalised recommendations