Conventional MRI and MR Angiography of Stroke

  • David Vu
  • R. Gilberto González
  • Pamela W. Schaefer

6.2.9 Conclusion

In the setting of acute stroke, MRA is useful for determining the severity of stenosis, vascular occlusion, and collateral flow. CE MRA and 3D TOF techniques have relatively high sensitivity and specificity in differentiating surgical from nonsurgical carotid stenoses. Three-dimensional TOF MRA is quite sensitive and specific for the evaluation of intracranial proximal stenoses and occlusions. Two-dimensional PC MRA is useful for determining collateral flow patterns in the circle of Willis. MRA is also useful in the determination of stroke etiologies such as dissection, fibromuscular dysplasia, vasculitis, and moya moya. Currently, MRA is relatively insensitive to the detection of stenoses in distal intracranial vessels but this detection will improve with new MR hardware and software.


Internal Carotid Artery Vertebral Artery Maximum Intensity Projection Image Vertebral Artery Dissection Carotid Artery Dissection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yuh WT et al (1991) MR imaging of cerebral ischemia: findings in the first 24 hours. Am J Neuroradiol 12(4):621–629PubMedGoogle Scholar
  2. 2.
    Maeda M et al (2001) Time course of arterial hyperintensity with fast fluid-attenuated inversion-recovery imaging in acute and subacute middle cerebral arterial infarction. J Magn Reson Imaging 13(6):987–990CrossRefPubMedGoogle Scholar
  3. 3.
    Flacke S et al (2000) Middle cerebral artery (MCA) susceptibility sign at susceptibility-based perfusion MR imaging: clinical importance and comparison with hyperdense MCA sign at CT. Radiology 215(2):476–482PubMedGoogle Scholar
  4. 4.
    Shimosegawa E et al (1993) Embolic cerebral infarction: MR findings in the first 3 hours after onset. Am J Roentgenol 160(5):1077–1082Google Scholar
  5. 5.
    Perkins CJ et al (2001) Fluid-attenuated inversion recovery and diffusion-and perfusion-weighted MRI abnormalities in 117 consecutive patients with stroke symptoms. Stroke 32(12):2774–2781PubMedGoogle Scholar
  6. 6.
    Ida M et al (1994) Subcortical low intensity in early cortical ischemia. Am J Neuroradiol 15(7):1387–1393PubMedGoogle Scholar
  7. 7.
    Ricci PE et al (1999) A comparison of fast spin-echo, fluidattenuated inversion-recovery, and diffusion-weighted MR imaging in the first 10 days after cerebral infarction. Am J Neuroradiol 20(8):1535–1542PubMedGoogle Scholar
  8. 8.
    Asato R, Okumura R., Konishi J (1991) “Fogging effect” in MR of cerebral infarct. J Comput Assist Tomogr 15(1):160–162PubMedGoogle Scholar
  9. 9.
    Crain MR et al (1991) Cerebral ischemia: evaluation with contrast-enhanced MR imaging. Am J Neuroradiol 12(4):631–639PubMedGoogle Scholar
  10. 10.
    Kuhn MJ, Mikulis DJ, Ayoub DM, Kosofsky BE, Davis KR, Taveras JM (1989) Wallerian degeneration after cerebral infarction: evaluation with sequential MR imaging. Radiology 172(1):179–182PubMedGoogle Scholar
  11. 11.
    Boyko OB et al (1992) Non-heme mechanisms for T1 shortening: pathologic, CT, and MR elucidation. Am J Neuroradiol 13(5):1439–1445PubMedGoogle Scholar
  12. 12.
    Hornig CR, Dorndorf W, Agnoli AL (1986) Hemorrhagic cerebral infarction — a prospective study. Stroke 17(2):179–185PubMedGoogle Scholar
  13. 13.
    Hakim AM, Ryder-Cooke A, Melanson D (1983) Sequential computerized tomographic appearance of strokes. Stroke 14(6):893–897PubMedGoogle Scholar
  14. 14.
    Kidwell CS et al (2002) Predictors of hemorrhagic transformation in patients receiving intra-arterial thrombolysis. Stroke 33(3):717–724CrossRefPubMedGoogle Scholar
  15. 15.
    Hermier M et al (2001) MRI of acute post-ischemic cerebral hemorrhage in stroke patients: diagnosis with T2*-weighted gradient-echo sequences. Neuroradiology 43(10):809–815CrossRefPubMedGoogle Scholar
  16. 16.
    Lin DD et al (2001) Detection of intracranial hemorrhage: comparison between gradient-echo images and b(0) images obtained from diffusion-weighted echo-planar sequences. Am J Neuroradiol 22(7):1275–1281PubMedGoogle Scholar
  17. 17.
    Hermier M, Nighoghossian N. Contribution of susceptibility-weighted imaging to acute stroke assessment. Stroke 35(8):1989–1994Google Scholar
  18. 18.
    Bradley WG Jr (1993) MR appearance of hemorrhage in the brain. Radiology 189(1):15–26PubMedGoogle Scholar
  19. 19.
    Jewells V, Castillo M (2003) MR angiography of the extracranial circulation. Magn Reson Imaging Clin North Am 11(4):585–597, viGoogle Scholar
  20. 20.
    Sohn CH, Sevick RJ, Frayne R (2003) Contrast-enhanced MR angiography of the intracranial circulation. Magn Reson Imaging Clin North Am 11(4):599–614Google Scholar
  21. 21.
    Barnett HJ et al (1998) Benefit of carotid endarterectomy in patients with symptomatic moderate or severe stenosis. North American Symptomatic Carotid Endarterectomy Trial Collaborators. N Engl J Med 339(20):1415–1425CrossRefPubMedGoogle Scholar
  22. 22.
    Executive Committee for the Asymptomatic Carotid Atherosclerosis Study (1995) Endarterectomy for asymptomatic carotid artery stenosis. J Am Med Assoc 273(18):1421–1428Google Scholar
  23. 23.
    Alvarez-Linera J et al (2003) Prospective evaluation of carotid artery stenosis: elliptic centric contrast-enhanced MR angiography and spiral CT angiography compared with digital subtraction angiography. Am J Neuroradiol 24(5):1012–1019PubMedGoogle Scholar
  24. 24.
    U-King-Im JM, Trivedi RA, Graves MJ et al (2004) Contrastenhanced MR angiography for carotid disease: diagnostic and potential clinical impact. Neurology 62(8):1282–1290PubMedGoogle Scholar
  25. 25.
    Hathout GM, Duh MJ, El-Saden SM (2003) Accuracy of contrast-enhanced MR angiography in predicting angiographic stenosis of the internal carotid artery: linear regression analysis. Am J Neuroradiol 24(9):1747–1756PubMedGoogle Scholar
  26. 26.
    Wardlaw JM et al (2002) Interobserver variability of magnetic resonance angiography in the diagnosis of carotid stenosis — effect of observer experience. Neuroradiology 44(2):126–132PubMedGoogle Scholar
  27. 27.
    Stark DWB (1999) Magnetic resonance imaging. Elsevier, New YorkGoogle Scholar
  28. 28.
    Patel MR et al (1995) Preoperative assessment of the carotid bifurcation. Can magnetic resonance angiography and duplex ultrasonography replace contrast arteriography? Stroke 26(10):1753–1758PubMedGoogle Scholar
  29. 29.
    Nederkoorn PJ et al (2003) Carotid artery stenosis: accuracy of contrast-enhanced MR angiography for diagnosis. Radiology 228(3):677–682PubMedGoogle Scholar
  30. 30.
    Nederkoorn PJ, van der Graaf Y, Hunink MG (2003) Duplex ultrasound and magnetic resonance angiography compared with digital subtraction angiography in carotid artery stenosis: a systematic review. Stroke 34(5):1324–1332CrossRefPubMedGoogle Scholar
  31. 31.
    Elgersma OE et al (2000) Multidirectional depiction of internal carotid arterial stenosis: three-dimensional time-of-flight MR angiography versus rotational and conventional digital subtraction angiography. Radiology 216(2):511–516PubMedGoogle Scholar
  32. 32.
    Elgersma OE et al (1999) Maximum internal carotid arterial stenosis: assessment with rotational angiography versus conventional intraarterial digital subtraction angiography. Radiology 213(3):777–783PubMedGoogle Scholar
  33. 33.
    El-Saden SM et al (2001) Imaging of the internal carotid artery: the dilemma of total versus near total occlusion. Radiology 221(2):301–308PubMedGoogle Scholar
  34. 34.
    Heiserman JE et al (1992) Carotid artery stenosis: clinical efficacy of two-dimensional time-of-flight MR angiography. Radiology 182(3):761–768PubMedGoogle Scholar
  35. 35.
    Modaresi KB et al (1999) Comparison of intra-arterial digital subtraction angiography, magnetic resonance angiography and duplex ultrasonography for measuring carotid artery stenosis. Br J Surg 86(11):1422–1426CrossRefPubMedGoogle Scholar
  36. 36.
    Furlan A et al (1999) Intra-arterial prourokinase for acute ischemic stroke. The PROACT II study: a randomized controlled trial. Prolyse in acute cerebral thromboembolism. J Am Med Assoc 282(21):2003–2011CrossRefGoogle Scholar
  37. 37.
    Del Zoppo GJ et al (1992) Recombinant tissue plasminogen activator in acute thrombotic and embolic stroke. Ann Neurol 32(1):78–86PubMedGoogle Scholar
  38. 38.
    Stock KW et al (1995) Intracranial arteries: prospective blinded comparative study of MR angiography and DSA in 50 patients. Radiology 195(2):451–456PubMedGoogle Scholar
  39. 39.
    Korogi Y et al (1994) Intracranial vascular stenosis and occlusion: diagnostic accuracy of three-dimensional, Fourier transform, time-of-flight MR angiography. Radiology 193(1):187–193PubMedGoogle Scholar
  40. 40.
    Yang JJ et al (2002) Comparison of pre-and postcontrast 3D time-of-flight MR angiography for the evaluation of distal intracranial branch occlusions in acute ischemic stroke. Am J Neuroradiol 23(4):557–567PubMedGoogle Scholar
  41. 41.
    Liu Y et al (2004) Acute ischemic stroke: predictive value of 2D phase-contrast MR angiography-serial study with combined diffusion and perfusion MR imaging. Radiology 231(2):517–527PubMedGoogle Scholar
  42. 42.
    Kucinski T et al (2003) Collateral circulation is an independent radiological predictor of outcome after thrombolysis in acute ischaemic stroke. Neuroradiology 45(1):11–18PubMedGoogle Scholar
  43. 43.
    Hoksbergen AW et al (2003) Assessment of the collateral function of the circle ofWillis: three-dimensional time-of-flight MR angiography compared with transcranial colorcoded duplex sonography. Am J Neuroradiol 24(3):456–462PubMedGoogle Scholar
  44. 44.
    Uemura A et al (2004) Prominent laterality of the posterior cerebral artery at three-dimensional time-of-flight MR angiography in M1-segment middle cerebral artery occlusion. Am J Neuroradiol 25(1):88–91PubMedGoogle Scholar
  45. 45.
    Provenzale JM (1995) Dissection of the internal carotid and vertebral arteries: imaging features. Am J Roentgenol 165(5):1099–1104Google Scholar
  46. 46.
    Shin JH et al (2000) Vertebral artery dissection: spectrum of imaging findings with emphasis on angiography and correlation with clinical presentation. Radiographics 20(6):1687–1696PubMedGoogle Scholar
  47. 47.
    Fisher CM, Ojemann RG, Roberson GH (1978) Spontaneous dissection of cervico-cerebral arteries. Can J Neurol Sci 5(1):9–19PubMedGoogle Scholar
  48. 48.
    Benninger DH et al (2004) Mechanism of ischemic infarct in spontaneous carotid dissection. Stroke 35(2):482–485CrossRefPubMedGoogle Scholar
  49. 49.
    Ozdoba C, Sturzenegger M, Schroth G (1996) Internal carotid artery dissection: MR imaging features and clinical-radiologic correlation. Radiology 199(1):191–198PubMedGoogle Scholar
  50. 50.
    Mokri B et al (1986) Spontaneous dissection of the cervical internal carotid artery. Ann Neurol 19(2):126–138CrossRefPubMedGoogle Scholar
  51. 51.
    Levy C et al (1994) Carotid and vertebral artery dissections: three-dimensional time-of-flight MR angiography and MR imaging versus conventional angiography. Radiology 190(1):97–103PubMedGoogle Scholar
  52. 52.
    Leclerc X et al (1999) Preliminary experience using contrast-enhanced MR angiography to assess vertebral artery structure for the follow-up of suspected dissection. Am J Neuroradiol 20(8):1482–1490PubMedGoogle Scholar
  53. 53.
    Khan R, Smith JK, Castillo M (2002) False-negative contrast MRA in the setting of carotid artery dissection. Emerg Radiol 9(6):320–322PubMedGoogle Scholar
  54. 54.
    Yamada I, Matsushima Y, Suzuki S (1992) Moyamoya disease: diagnosis with three-dimensional time-of-flight MR angiography. Radiology 184(3):773–778PubMedGoogle Scholar
  55. 55.
    Yamada I et al (2001) High-resolution turbo magnetic resonance angiography for diagnosis of Moyamoya disease. Stroke 32(8):1825–1831PubMedGoogle Scholar
  56. 56.
    Yamada I, Suzuki S, Matsushima Y (1995) Moyamoya disease: comparison of assessment with MR angiography and MR imaging versus conventional angiography. Radiology 196(1):211–2128PubMedGoogle Scholar
  57. 57.
    Steen RG et al (2003) Brain imaging findings in pediatric patients with sickle cell disease. Radiology 228(1):216–225PubMedGoogle Scholar
  58. 58.
    Demaerel P et al (2004) Magnetic resonance angiography in suspected cerebral vasculitis. Eur Radiol 14(6):1005–1012CrossRefPubMedGoogle Scholar
  59. 59.
    Heiserman JE et al (1992) MR angiography of cervical fi-bromuscular dysplasia. Am J Neuroradiol 13(5):1454–1457PubMedGoogle Scholar
  60. 60.
    Furie DM, Tien RD (1994) Fibromuscular dysplasia of arteries of the head and neck: imaging findings. Am J Roentgenol 162(5):1205–1209Google Scholar
  61. 61.
    Tsai FY et al (1995) MR staging of acute dural sinus thrombosis: correlation with venous pressure measurements and implications for treatment and prognosis. Am J Neuroradiol 16(5):1021–1029PubMedGoogle Scholar
  62. 62.
    Liauw L et al (2000) MR angiography of the intracranial venous system. Radiology 214(3):678–682PubMedGoogle Scholar
  63. 63.
    Ayanzen RH et al (2000) Cerebral MR venography: normal anatomy and potential diagnostic pitfalls. Am J Neuroradiol 21(1):74–78PubMedGoogle Scholar
  64. 64.
    Farb RI et al (2003) Intracranial venous system: gadolinium-enhanced three-dimensional MR venography with auto-triggered elliptic centric-ordered sequence-initial experience. Radiology 226(1):203–209PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • David Vu
    • 1
  • R. Gilberto González
    • 1
  • Pamela W. Schaefer
    • 2
  1. 1.Neuroradiology DivisionMassachusetts General Hospital and Harvard Medical SchoolBostonUSA
  2. 2.NeuroradiologyMassachusetts General HospitalBoston

Personalised recommendations