Skip to main content

Principles and Application of Projected Multidimensional NMR Spectroscopy — G-matrix Fourier Transform NMR

  • Chapter
Advanced Techniques in Biophysics

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 10))

  • 995 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atreya HS, Szyperski T (2004) G-matrix Fourier transform NMR spectroscopy for complete protein resonance assignment. Proc Natl Acad Sci USA 101:9642–9647

    Article  ADS  Google Scholar 

  • Bodenhausen G, Ernst RR (1981) The accordion experiment, a simple approach to 3-dimensional NMR-spectroscopy. J Magn Reson 45:367–373

    Google Scholar 

  • Brutscher B, Cordier F, Simorre JP, Caffrey MS, Marion D (1995a) High-resolution 3D HNCOCA experiment applied to a 28-kDa paramagnetic protein. J Biomol NMR 5:202–206

    Article  Google Scholar 

  • Brutscher B, Morelle N, Cordier F, Marion D (1995b) Determination of an initial set of NOE-derived distance contraints for the structure determination of N-15/C-13-labeled proteins. J Magn Reson B109:238–242

    Article  Google Scholar 

  • Cavanagh C, Fairbrother WJ, Palmer AG, Skelton NJ (1996) Protein NMR spectroscopy. Academic, San Diego

    Google Scholar 

  • Coggins BE, Venters RA, Zhou P (2003) Generalized reconstruction of n-D NMR spectra from multiple projections: application to the 5-D HACACONH spectrum of protein G B1 domain. J Am Chem Soc 126:1000–1001

    Article  Google Scholar 

  • Constans A (2003) NMR hits the big time. Scientist 17:45–48

    Google Scholar 

  • Ding K, Gronenborn AM (2002) Novel 2D triple-resonance NMR experiments for sequential resonance assignments of proteins. J Magn Reson 156:262–268

    Article  ADS  Google Scholar 

  • Ding K, Gronenborn AM (2003) Simultaneous and accurate determination of one-bond 15N--13C′ and two-bond 1HN-13C′ dipolar couplings. J Am Chem Soc 125:11504–1150

    Article  Google Scholar 

  • Ernst RR, Bodenhausen G, Wokaun A (1987) Principles of nuclear magnetic resonance in one and two dimensions. Oxford University Press, London

    Google Scholar 

  • Gardner K, Kay LE (1998) The use of 2H, 13C, 15N multidimensional NMR to study the structure and dynamics of proteins. Annu Rev Biophys Biomol Struct 27:357–406

    Article  Google Scholar 

  • Grage H, Akke M (2003) A statistical analysis of NMR spectrometer noise. J Magn Reson 162:176–188

    Article  ADS  Google Scholar 

  • Hoch JC, Stern AS (1996) NMR data processing. Wiley-Liss, New York

    Google Scholar 

  • Hoshino M, Otting G (2004) Sensitivity-enhanced double-TROSY experiment for simultaneous measurement of one-bond (15)N-(1)H, (15)N-(13)C′ and two-bond (1)H-(13)C′ couplings. J Magn Reson 171:270–276

    Article  ADS  Google Scholar 

  • Kay LE, Prestegard JH (1988) Spin-lattice relaxation of coupled spins from 2D Accordion spectroscopy. J Magn Reson 77:599–605

    Google Scholar 

  • Kim S, Szyperski T (2003) GFT NMR, a new approach to rapidly obtain precise high-dimensional spectral information. J Am Chem Soc 125:1385–1393

    Article  Google Scholar 

  • Kim S, Szyperski T (2004) GFT NMR experiment for polypeptide backbone and 13Cβ chemical shift assignment. J Biomol NMR 28:117–130

    Article  Google Scholar 

  • Kontaxis G, Keeler J (1995) The accordion approach for „Taylored“ TOCSY. J Magn Reson 115:35–4

    Article  Google Scholar 

  • Kupče E, Freeman R (2003) Projection-reconstruction of three-dimensional NMR spectra. J Am Chem Soc 125:13958–13959

    Article  Google Scholar 

  • Kupče E, Freeman R (2004) Fast reconstruction of four-dimensional NMR spectra from plane projections. J Biomol NMR 28:391–395

    Article  Google Scholar 

  • Liu G, Shen Y, Atreya HS, Parish D, Shao Y, Sukumaran D, Xiao R, Yee A, Lemak A, Bhattacharya A, Acton TA, Arrowsmith CH, Montelione GT, Szyperski T (2005) NMR data collection and analysis protocol for high-throughput protein structure determination. Proc Natl Acad Sci USA 102:10487–10492

    Article  ADS  Google Scholar 

  • Löhr F, Rüterjans H (1995) A new experiment for the sequential assignment of backbone resonances in proteins. J Biomol NMR 6:189–197

    Article  Google Scholar 

  • Mandel AM, Palmer AG (1994) Measurement of relaxation-rate constants using constant-time accordion NMR spectroscopy. J Magn Reson 110:62–72

    Article  Google Scholar 

  • Marion D, Wüthrich K (1983) Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of 1H-1H spin-spin coupling-constants in proteins. Biochem Biophys Res Commun 113:967–974

    Article  Google Scholar 

  • Montelione GT, Zheng D, Huang Y, Gunsalus C, Szyperski T (2000) Protein NMR spectroscopy for structural genomics. Nat Struct Biol 7:982–984

    Article  Google Scholar 

  • Moseley HNB, Monleon D, Montelione GT (2001) Automatic determination of protein backbone resonance assignments from triple resonance nuclear magnetic resonance data. Methods Enzymol 339:91–108

    Article  Google Scholar 

  • Moseley HNB, Riaz N, Aramini JM, Szyperski T, Montelione GT (2004) A generalized approach to automated NMR peak list editing: application to reduced dimensionality triple resonance spectra. J Magn Reson 170:263–277

    Article  ADS  Google Scholar 

  • Pervushin K, Riek R, Wider G, Wüthrich K (1997) Attenuated T-2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci USA 94:12366–12371

    Article  ADS  Google Scholar 

  • Pervushin K, Vogeli B, Eletsky A (2002) Longitudinal 1H relaxation optimization in TROSY NMR spectroscopy. J Am Chem Soc 124:12898–12902

    Article  Google Scholar 

  • Prestegard JH (1998) New techniques in structural NMR-anisotropic interactions. Nat Struct Biol 5:517–522

    Article  Google Scholar 

  • Service RF (2003) Propelled by recent advances, NMR moves into the fast lane. Science 299:503

    Article  Google Scholar 

  • Szyperski T, Wider G, Bushweller JH, Wüthrich K (1993a) 3D 13C-15N heteronuclear two-spin coherence spectroscopy for polypeptide backbone assignments in 13C-15N-double labeled proteins. J Biomol NMR 3:127–132

    Google Scholar 

  • Szyperski T, Wider G, Bushweller JH, Wüthrich K (1993b) Reduced dimensionality in triple resonance NMR experiments. J Am Chem Soc 115:9307–9308

    Article  Google Scholar 

  • Szyperski T, Pellecchia M, Wüthrich K (1994) 3D Hα/βCα/β(CO)NHN, a Projected 4D NMR experiment for the sequential correlation of polypeptide 1Hα/β, 13Cα/β and backbone 15N and 1HN chemical shifts. J Magn Reson B105:188–191

    Article  Google Scholar 

  • Szyperski T, Braun D, Fernandez C, Bartels C, Wüthrich K (1995) A novel reduced-dimensionality triple resonance experiment for efficient polypeptide backbone assignment, 3D COHNNCA. J Magn Reson B 108:197–203

    Article  Google Scholar 

  • Szyperski T, Braun D, Banecki B, Wüthrich K (1996) Useful information from axial peak magnetization in projected NMR experiments. J Am Chem Soc 118:8147–8148

    Article  Google Scholar 

  • Szyperski T, Banecki B, Braun D, Glaser RW (1998) Sequential assignment of medium-sized 15N/13C-labeled proteins with projected 4D triple resonance NMR experiments. J Biomol NMR 11:387–405

    Article  Google Scholar 

  • Szyperski T, Yeh DC, Sukumaran DK, Moseley HNB, Montelione GT (2002) Reduced-dimensionality NMR spectroscopy for high-throughput protein resonance assignment. Proc Natl Acad Sci USA 99:8009–8014

    Article  ADS  Google Scholar 

  • Tjandra N, Bax A (1997) Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science 278:1111–1114

    Article  ADS  Google Scholar 

  • Tolman JR, Prestegard JH (1996) Measurement of amide 15N-1H one-bond couplings in proteins using accordion heteronuclear shift correlation experiments. J Magn Reson B 112:269–274

    Article  Google Scholar 

  • Xia Y, Arrowsmith C, Szyperski T (2002) Novel projected 4D triple resonance experiments for polypeptide chemical shift assignment. J Biomol NMR 24:41–51

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Szyperski, T. (2006). Principles and Application of Projected Multidimensional NMR Spectroscopy — G-matrix Fourier Transform NMR. In: Arrondo, J.L.R., Alonso, A. (eds) Advanced Techniques in Biophysics. Springer Series in Biophysics, vol 10. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-30786-9_7

Download citation

Publish with us

Policies and ethics