Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam S (1977) γ-Radiolysis of N2O-saturated aqueous solutions of trehalose and trehalose/amino acid mixtures. Int J Radiat Biol 32:219–227

    CAS  Google Scholar 

  • Adam W, Saha-Möller CR, Schönberger A (1996) Photooxidation of 8-oxo-7,8-dihydro-2′-deoxyguanosine by thermally generated triplet-excited ketones from 3-(hydroxymethyl)-3,4,4,-trimethyl-1,2-dioxetane and comparison with type I and type II photosensitizers. J Am Chem Soc 118:9233–9238

    CAS  Google Scholar 

  • Adam W, Grimm GN, Saha-Möller CR, Dall’Aqua F, Miolo G, Vedaldi D (1998) DNA damage by tert-butoxyl radicals generated in the photolysis of a water-soluble, DNA-binding peroxyester acting as a radical source. Chem Res Toxicol 11:1089–1097

    Article  CAS  PubMed  Google Scholar 

  • Adam W, Arnold MA, Saha-Möller CR (2001) Photooxidative damage of guanine in DG and DNA by the radicals derived from the α cleavage of the electronically excited carbonyl products generated in the thermolysis of alkoxymethyl-substituted dioxetanes and the photolysis of alkoxyacetones. J Org Chem 66:597–604

    CAS  PubMed  Google Scholar 

  • Adam W, Arnold MA, Nau WM, Pischel U, Saha-Möller CR, Saha-Möller CR (2002a) A comparative photomechanistic study (spin trapping, EPR spectroscopy, transient kinetics, photoproducts) of nucleoside oxidation (dG and 8-oxo-dG) by triplet-excited acetophenones and by the radicals generated from α-oxy-substituted derivatives through Norrish-type I cleavage. J Am Chem Soc 124:3893–3904

    CAS  PubMed  Google Scholar 

  • Adam W, Arnold MA, Grüne M, Nau WM, Pischel U, Saha-Möller CR (2002b) Spiroimiodihydantoin is the major product in the photooxidation of 2′-deoxyguanosine by triplet states and oxyl radicals generated from hydroxyacetophenone photolysis and dioxetane thermolysis. Org Lett 4:537–540

    CAS  PubMed  Google Scholar 

  • Adam W, Marquard S, Kemmer D, Saha-Möller CR, Schreier P (2002c) Photobiological model studies on perester and pyridone tert-butoxyl radical sources (photo-Fenton-type reagents): 2′-deoxyguanosine modification by methyl radicals generated through competitive β-cleavage in aqueous media. Photochem Photobiol Sci 1:609–612

    Article  CAS  PubMed  Google Scholar 

  • Adams GE, Willson RL (1969) Pulse radiolysis studies on the oxidation of organic radicals in aqueous solution. Trans Faraday Soc 65:2981–2987

    CAS  Google Scholar 

  • Adams GE, Willson RL (1972) On the mechanism of BUdR sensitization: a pulse radiolysis study of one electron transfer in nucleic-acid derivatives. Int J Radiat Biol 22:589–597

    CAS  Google Scholar 

  • Adams GE, Willson RL (1973) Ketyl radicals in aqueous solution. Pulse radiolysis study. J Chem Soc Faraday Trans 169:719–729

    Google Scholar 

  • Adhikary A, Bothe E, Jain V, von Sonntag C (1997a) Inhibition of radiation-induced DNA strand breaks by Hoechst 33258: OH-radical scavenging and DNA radical quenching. Radioprotection 32:C1-89–C1-90

    Google Scholar 

  • Adhikary A, Bothe E, von Sonntag C, Jain V (1997b) DNA radioprotection by bisbenzimidazole derivative Hoechst 33258: model studies on the nucleotide level. Radiat Res 148:493–494

    CAS  Google Scholar 

  • Adhikary A, Bothe E, Jain V, von Sonntag C (2000) Pulse radiolysis of the DNA-binding bisbenzimidazole derivatives Hoechst 33258 and 33342 in aqueous solution. Int J Radiat Biol 76:1157–1166

    CAS  PubMed  Google Scholar 

  • Adhikary A, Malkhasian AYS, Collins S, Koppen J, Becker D, Sevilla MD (2005) UVA-visible photo-excitation of guanine radical cation in DNA and model structures. Nucleic Acids Res 33:5553–5564

    Article  CAS  PubMed  Google Scholar 

  • Aflatooni K, Gallup GA, Burrow PD (1998) Electron attachment of the DNA bases. J Phys Chem A 102:6205–6207

    Article  CAS  Google Scholar 

  • Al-Sheikhly M (1994) The reactivity of adenyl and guanyl radicals towards oxygen. Radiat Phys Chem 44:297–301

    Article  CAS  Google Scholar 

  • Al-Sheikhly M, von Sonntag C (1983) γ-Radiolysis of 1,3-dimethyluracil in N2O-saturated aqueous solutions. Z Naturforsch 38b:1622–1629

    CAS  Google Scholar 

  • Al-Sheikhly MI, Hissung A, Schuchmann H-P, Schuchmann MN, von Sonntag C, Garner A, Scholes G (1984) Radiolysis of dihydrouracil and dihydrothymine in aqueous solutions containing oxygen; first-and second-order reactions of the organic peroxyl radicals; the role of isopyrimidines as intermediates. J Chem Soc Perkin Trans 2 601–608

    Google Scholar 

  • Al-Yamoor KY, Garner A, Idriss Ali KM, Scholes G (1977) Reactions of pyrimidine radicals in irradiated aqueous systems: intermediate role of carbocations. In: Hedvig P, Schiller R (eds) Proc 4th Tihany Symp Radiat Chem: Keszthely 1976. Akadémiai Kiadó, Budapest, pp 845–852

    Google Scholar 

  • Anderson AS, Hwang J-T, Greenberg MM (2000) Independent generation and reactivity of 2′-deoxy-5-methyleneuridine-5-yl, a significant reactive intermediate produced from thymidine as a result of oxidative stress. J Org Chem 65:4648–4654

    CAS  PubMed  Google Scholar 

  • Arakali AV, Alderfer JL, Paul CR, Belfi CA, Box HC (1988) Characterization of radiation and autoxidation-initiated damage in DNA model compounds. Radiat Phys Chem 32:511–517

    CAS  Google Scholar 

  • Aravindakumar CT, Mohan H, Mudaliar M, Rao BSM, Mittal JP, Schuchmann MN, von Sonntag C (1994) Addition of eaq and H atoms to hypoxanthine and inosine and the reactions of α-hydroxyalkyl radicals with purines. A pulse radiolysis and product study. Int J Radiat Biol 66:351–365

    CAS  PubMed  Google Scholar 

  • Aravindakumar CT, Jacob TA, Mohan H, Mahal HS, Mukherjee T, Mittal JP (1998) Anomalous high reactivity of formyl and acetone ketyl radicals with uracil and its derivatives. Chem Phys Lett 287:645–652

    Article  CAS  Google Scholar 

  • Aravindakumar CT, Schuchmann MN, Rao BSM, von Sonntag J, von Sonntag C (2003) The reactions of cytidine and 2′-deoxycytidine with SO4•− revisited. Pulse radiolysis and product studies. Org Biomol Chem 1:401–408

    Article  CAS  PubMed  Google Scholar 

  • Asmus K-D, Deeble DJ, Garner A, Idriss Ali KM, Scholes G (1978) Chemical aspects of radiosensitization. Reaction of sensitizers with radicals produced in the radiolysis of aqueous solutions of nucleic acid components. Br J Cancer Suppl III 37:46–49

    CAS  Google Scholar 

  • Atherton SJ, Harriman A (1993) Photochemistry of intercalated methylene blue: photoinduced hydrogen atom abstraction from guanine and adenine. J Am Chem Soc 115:1816–1822

    Article  CAS  Google Scholar 

  • Bachler V, Hildenbrand K (1992) EPR-detection of the guanosyl radical cation in aqueous solution. Quantum chemically supported assignment of nitrogen and proton hyperfine couplings. Radiat Phys Chem 40:59–68

    CAS  Google Scholar 

  • Bamatraf MMM, O’Neill P, Rao BSM (1998) Redox dependence of the rate of interaction of hydroxyl radical adducts of DNA nucleobases with oxidants: consequences for DNA strand breakage. J Am Chem Soc 120:11852–11857

    Article  CAS  Google Scholar 

  • Bamatraf MMM, O’Neill P, Rao BSM (2000) OH radical induced charge migration in oligodeoxynucleotides. J Phys Chem B 104:636–642

    Article  CAS  Google Scholar 

  • Bansal KM, Fessenden RW (1978) Radiation-chemical studies of the reaction of SO4•− with uracil and its derivatives. Radiat Res 75:497–507

    CAS  Google Scholar 

  • Bansal KM, Patterson LK, Schuler RH (1972) Production of halide ion in the radiolysis of aqueous solutions of the 5-halouracils. J Phys Chem 76:2386–2392

    CAS  PubMed  Google Scholar 

  • Barnes JP, Bernhard WA (1994) One-electron-reduced cytosine in acidic glasses: conformational states before and after proton transfer. J Phys Chem 98:887–893

    CAS  Google Scholar 

  • Barvian MR, Greenberg MM (1992) Independent generation of the major adduct of hydroxyl radical and thymidine. Examination of intramolecular hydrogen atom transfer in competition with thiol trapping. Tetrahedron Lett 33:6057–6060

    Article  CAS  Google Scholar 

  • Barvian MR, Greenberg MM (1995) Independent generation of 5,6-dihydrothymid-5-yl and investigation of its ability to effect nucleic acid strand scission via hydrogen atom abstraction. J Org Chem 60:1916–1917

    Article  CAS  Google Scholar 

  • Barvian MR, Barkley RM, Greenberg MM (1996) Reactivity of 5,6-dihydro-5-hydroxythymid-6-yl generated via photoinduced single electron transfer and the role of cyclohexa-1,4-diene in the photodeoxygenation process. J Am Chem Soc 117:4894–4904

    Google Scholar 

  • Becker D, Sevilla MD (1997) Radiation damage to DNA and related biomolecules. Electron Spin Reson 16:79–115

    Google Scholar 

  • Behrens G, Hildenbrand K, Schulte-Frohlinde D, Herak JN (1988) Reaction of SO4•− with methylated uracils. An electron spin resonance study in aqueous solution. J Chem Soc Perkin Trans 2 305–317

    Google Scholar 

  • Belfi CA, Box HC (1985) HPLC-n.m.r. studies of radiation damage to d(TpA). Int J Radiat Biol 47:393–396

    CAS  Google Scholar 

  • Bellon S, Ravanat J-L, Gasparutto D, Cadet J (2002) Cross-linked thymine-purine base tandem lesions: synthesis, characterization, and measurement in γ-irradiated isolated DNA. Chem Res Toxicol 15:598–606

    Article  CAS  PubMed  Google Scholar 

  • Berger M, Cadet J (1983a) Radiation chemistry of DNA components. Formation of the 8,5′-cyclo-2′,5′-dideoxyguanosine by gamma irradiation of deaerated aqueous solutions of 2′-deoxyguanosine and its 5′-monophosphate ester. Chem Lett 435–438

    Google Scholar 

  • Berger M, Cadet J (1983b) Steady-state γ-radiolysis of purine 2′-deoxyribonucleosides in oxygenfree aqueous solutions containing N-oxyl radicals. In: Broerse JJ, Barendsen GW, Kal HB, van der Kogel AJ (eds) Proc VII Int Congr Radiat Res. Martinus Nyhoff, Amsterdam, pp A3–3

    Google Scholar 

  • Berger M, Cadet J (1985) Isolation and characterization of the radiation-induced degradation products of 2′-deoxyguanosine in oxygen-free aqueous solutions. Z Naturforsch 40b:1519–1531

    CAS  Google Scholar 

  • Berger M, Cadet J, Ulrich J (1985) Radiation-induced binding of 2,2,6,6-tetramethyl-1,4-piperidone-N-oxyl to thymidine in oxygen-free aqueous solutions. Isolation and characterization of the adducts. Can J Chem 63:6–14

    CAS  Google Scholar 

  • Berger M, Anselmino C, Mouret J-F, Cadet J (1990) High performance liquid chromatography-electrochemical assay for monitoring the formation of 8-oxo-7,8-dihydroadenine and its related 2′-deoxyribonucleoside. J Liquid Chromatogr 13:929–940

    CAS  Google Scholar 

  • Bernhard WA (1981) Solid-state radiation chemistry of DNA: the bases. Adv Radiat Biol 9:199–280

    CAS  Google Scholar 

  • Beyrich-Graf X, Müller SN, Giese B (1998) Oxidation of 4′-deoxyribonucleoside radicals to 4′-deoxyribonucleoside cations. A model for the function of bleomycin. Tetrahedron Lett 39:1553–1556

    Article  CAS  Google Scholar 

  • Bhatia K, Schuler RH (1973) Uracilyl radical production in the radiolysis of aqueous solutions of the 5-halouracils. J Phys Chem 77:1888–1896

    CAS  Google Scholar 

  • Bhattacharyya SN, Mandal PC (1983) Effect of iron(III) ions on the radiosensitivity of uracil. Int J Radiat Biol 43:141–148

    CAS  Google Scholar 

  • Bianchini F, Hall J, Donato F, Cadet J (1996) Monitoring urinary excretion of 5-hydroxymethyluracil for assessment of oxidative DNA damage and repair. Biomarkers 1:178–184

    CAS  Google Scholar 

  • Bienvenu C, Wagner JR, Cadet J (1996) Photosensitized oxidation of 5-methyl-2′-deoxycytidine by 2-methyl-1,4-naphthoquinone: characterization of 5-(hydroperoxymethyl)-2′-deoxycytidine and stable methyl group oxidation products. J Am Chem Soc 118:11406–11411

    Article  CAS  Google Scholar 

  • Bothe E, Behrens G, Schulte-Frohlinde D (1977) Mechanism of the first order decay of 2-hydroxypropyl-2-peroxyl radicals and of O2•− formation in aqueous solution. Z Naturforsch 32b:886–889

    CAS  Google Scholar 

  • Bothe E, Deeble DJ, Lemaire DGE, Rashid R, Schuchmann MN, Schuchmann H-P, Schulte-Frohlinde D, Steenken S, von Sonntag C (1990) Pulse-radiolytic studies on the reactions of SO4•− with uracil derivatives. Radiat Phys Chem 36:149–154

    CAS  Google Scholar 

  • Box HC (1977) Radiation effects: ESR and ENDOR Analysis. Academic Press, New York

    Google Scholar 

  • Box HC, Budzinski EE (1975) Primary radiation damage in thymidine. J Chem Phys 62:197–199

    CAS  Google Scholar 

  • Box HC, Potter WR, Budzinski EE (1975) The reduction of nucleotides by ionizing radiation: Uridine 5′ phosphate and cytidine 3′ phosphate. J Chem Phys 62:3476–3478

    CAS  Google Scholar 

  • Box HC, Budzinski EE, Freund HG, Evans MS, Patrzyc HB, Wallace JC, Maccubbin AE (1993) Vicinal lesions in X-irradiated DNA? Int J Radiat Biol 64:261–263

    CAS  PubMed  Google Scholar 

  • Box HC, Freund HG, Budzinski EE, Wallace JC, Maccubbin AE (1995) Free radical-induced double base lesions. Radiat Res 141:91–94

    CAS  PubMed  Google Scholar 

  • Brown PE, Calvin M, Newmark JF (1966) Thymine addition to ethanol: Induction by gamma irradiation. Science 151:68–70

    CAS  PubMed  Google Scholar 

  • Brustad T, Bugge H, Jones WBG, Wold E (1972) Reactions between organic nitroxyl free radicals and radiation-induced transients in the DNA bases. Int J Radiat Biol 22:115–129

    CAS  Google Scholar 

  • Buchko GW, Cadet J, Ravanat J-L, Labataille P (1993) Isolation and characterization of a new product produced by ionizing radiation and type I photosensitization of 2′-deoxyguanosine in oxygensaturated aqueous solution: (2S)-2,5′-anhydro-1-(2′-deoxy-β-D-erythro-pentofuranosyl)-5-guanidinylidene-2-hydroxy-4-oxoimidazolidine. Int J Radiat Biol 63:669–676

    CAS  PubMed  Google Scholar 

  • Buchko GW, Wagner JR, Cadet J, Raoul S, Weinfeld M (1995a) Methylene blue-mediated photooxidation of 7,8-dihydro-8-oxo-2′-deoxyguanosine. Biochim Biophys Acta 1263:17–24

    PubMed  Google Scholar 

  • Buchko GW, Cadet J, Morin B, Weinfeld M (1995b) Photooxidation of d(TpG) by riboflavin and methylene blue. Isolation and characterization of thymidyl-(3′,5′)-2-amino-5-[(2-deoxy-β-D-erythro-pentofuranosyl)amino]-4H-imidazol-4-one and its primary decomposition product thymidyl-(3′,5′)-2,2-diamino-4-[(2-deoxy-β-D-erythro-pentopyranosyl)amino]-5(2H)-oxazolone. Nucleic Acids Res 23:3954–3961

    CAS  PubMed  Google Scholar 

  • Burney S, Niles JC, Dedon PC, Tannenbaum SR (1999) DNA damage in deoxynucleosides and oligonucleotides treated with peroxynitrite. Chem Res Toxicol 12:513–520

    Article  CAS  PubMed  Google Scholar 

  • Burr JG, Wagner BO, Schulte-Frohlinde D (1976) The rates of electron transfer from ClUra•− and ClUraH to p-nitroacetophenone. Int J Radiat Biol 29:433–438

    CAS  Google Scholar 

  • Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O) in aqueous solution. J Phys Chem Ref Data 17:513–886

    CAS  Google Scholar 

  • Cadet J (1980) Steady state radiolysis of aqueous aerated solutions of 5,6-dihydrothymine. Identification of the major degradation products. Z Naturforsch 35b:1579–1583

    CAS  Google Scholar 

  • Cadet J, Teoule R (1975) Radiolyse gamma de la thymidine en solution aqueuse aérée I. Identification des hydroxyhydroperoxydes. Bull Soc Chim Fr 879–884

    Google Scholar 

  • Cadet J, Berger M, Guttin-Lombard M, Bobenrieth MJ (1979) Radiosensibilisation de la thymine en presence de tetramethyl-2, 2,6,6 piperidone-4 oxyle-1. Caracterisation des produits d’addition. Tetrahedron 35:2743–2748

    Article  CAS  Google Scholar 

  • Cadet J, Balland A, Berger M (1981) Degradation radio-induite de la thymidine en solution aqueuse desaeree. Int J Radiat Biol 39:119–133

    CAS  Google Scholar 

  • Cadet J, Decarroz C, Voituriez L, Wagner JR, Fisher GJ (1983a) Near ultraviolet photooxidation of thymidylyl(3′ 5′)thymidine sensitized by menadione. In: Broerse JJ, Barendsen GW, Kal HB, van der Kogel AJ (eds) Proc 7th Congr Radiat Res, Amsterdam 1983, pp A3–A10

    Google Scholar 

  • Cadet J, Voituriez L, Berger M, Myers LS Jr (1983b) Radiation-induced degradation of purine and pyrimidine 2′-deoxyribonucleosides in aqueous KBr solutions. Z Naturforsch 38b:1643–1651

    CAS  Google Scholar 

  • Cadet J, Berger M, Buchko GW, Prakash CJ, Raoul S, Ravanat J-L (1994) 2,2-Diamino-4-[(3,5-di-O-acetyl-2-deoxy-β-D-erythro-pentafuranosyl)amino]-5-(2H)-oxazolone: A novel and predominant radical oxidation product of 3′,5′-di-O-acetyl-2′-deoxyguanosine. J Am Chem Soc 116:7403–7404

    Article  CAS  Google Scholar 

  • Campbell JM, von Sonntag C, Schulte-Frohlinde D (1974) Photolysis of 5-bromouracil and some related compounds in solution. Z Naturforsch 29b:750–757

    Google Scholar 

  • Candeias LP, Steenken S (1989) Structure and acid-base properties of one-electron-oxidized deoxyguanosine, guanosine, and 1-methylguanosine. J Am Chem Soc 111:1094–1099

    Article  CAS  Google Scholar 

  • Candeias LP, Steenken S (1992a) Electron adducts of adenine nucleosides and nucleotides in aqueous solution: protonation at two carbon sites (C2 and C8) and intra-and intermolecular catalysis by phosphate. J Phys Chem 96:937–944

    CAS  Google Scholar 

  • Candeias LP, Steenken S (1992b) Ionizing purine nucleosides and nucleotides and their components by 193-nm laser photolysis in aqueous solution: model studies for oxidative damage of DNA. J Am Chem Soc 114:699–704

    Article  CAS  Google Scholar 

  • Candeias LP, Steenken S (2000) Reaction of HO with guanine derivatives in aqueous solution: formation of two different redox-active OH-adduct radicals and their unimolecular transformation reactions. Properties of G(-H). Chem Eur J 6:475–484

    Article  CAS  Google Scholar 

  • Candeias LP, Wolf P, O’Neill P, Steenken S (1992) Reaction of hydrated electrons with guanine nucleosides: fast protonation on carbon of the electron adduct. J Phys Chem 96:10302–10307

    CAS  Google Scholar 

  • Capponi M, Gut I, Wirz J (1986) The equilibrium phenol-2,4-cyclohexadienone in aqueous solution. Angew Chem Int Ed Engl 26:344–345

    Google Scholar 

  • Carrell T, Burgdorf LT, Kundu LM, Cichon M (2001) The mechanism of action of DNA photolyases. Curr Opin Chem Biol 5:491–498

    Google Scholar 

  • Carter KN, Greenberg MM (2001) Direct measurements of pyrimidine C6-hydrate stability. Bioorg Medic Chem 9:2341–2346

    Google Scholar 

  • Carter KN, Greenberg MM (2003) Independent generation and study of 5,6-dihydro-2′-deoxyuridin-6-yl, a member of the major family of reactive intermediates formed in DNA from the effects of γ-radiolysis. J Org Chem 68:4275–4280

    Article  CAS  PubMed  Google Scholar 

  • Carter KN, Taverner T, Schiesser CH, Greenberg MM (2000) Chemical evidence for thiyl radical addition to the C6-position of a pyrimidine nucleoside and its possible relevance to DNA damage amplification. J Org Chem 65:8375–8378

    Article  CAS  PubMed  Google Scholar 

  • Catterall H, Davies MJ, Gilbert BC (1992) An EPR study of the transfer of radical-induced damage from the base to sugar in nucleic acid components: relevance to the occurrence of strandbreakage. J Chem Soc Perkin Trans 2 1379–1385

    Google Scholar 

  • Chabita K, Saha A, Mandal PC, Bhattacharyya SN, Rath MC, Mukherjee T (1996) Reactions of OH and eaq with uracil and thymine in the presence of Cu(II) ions in dilute aqueous solutions: a pulse radiolysis study. Res Chem Intermed 22:225–240

    CAS  Google Scholar 

  • Chatgilialoglu C, Gimisis T (1998) Fate of the C-1′ peroxyl radical in the 2′-deoxyuridine system. Chem Commun 1249–1250

    Google Scholar 

  • Chatgilialoglu C, Gimisis T, Guerra M, Ferreri C, Emanuel CJ, Horner JH, Newcomb M, Pedulli GF (1998) Spectra and structure of the 2′-deoxyuridin-1′-yl radical. Tetrahedron Lett 39:3947–3950

    Article  CAS  Google Scholar 

  • Chatgilialoglu C, Ferreri C, Bazzanini R, Guerra M, Choi S-Y, Emanuel CJ, Horner JH, Newcomb M (2000) Model of DNA C1′ radical. Structural, spectral and chemical properties of the thyminylmethyl radical and the 2′-deoxyuridin-1′-yl radical. J Am Chem Soc 122:9525–9533

    CAS  Google Scholar 

  • Chatgilialoglu C, Guerra M, Mulazzani QG (2003) Model studies of DNA C5′ radical. Selective generation and reactivity of 2′-deoxyadenosine-5′-yl radical. J Am Chem Soc 125:3839–3848

    Article  CAS  PubMed  Google Scholar 

  • Chatgilialoglu C, Duca M, Ferreri C, Guerra M, Ioele M, Mulazzani QG, Strittmatter H, Giese B (2004) Selective generation and reactivity of 5′-adenosinyl and 2′-adenosinyl radicals. Chem Eur J 10:1249–1255

    Article  CAS  Google Scholar 

  • Chatgilialoglu C, Ioele M, Mulazzani QG (2005) Reactions of oxide radical anion (O•−) with pyrimidine nucleosides. Radiat Phys Chem 72:251–256

    Article  CAS  Google Scholar 

  • Cho S-I, Shin S (2000) Comment on the mechanism of proton-coupled electron transfer reactions. J Mol Struct (Theochem) 499:1–12

    CAS  Google Scholar 

  • Close DM (1993) Radical ions and their reactions in DNA constituents: ESR/ENDOR studies of radiation damage in the solid state. Radiat Res 135:1–15

    CAS  PubMed  Google Scholar 

  • Close DM (2002) Comment on «A Fourier transform EPR study of uracil and thymine radical anions in aqueous solution» by JM Lü, J Geimer, S Naumov and D Beckert. Phys Chem Chem Phys 2001, 3:952. Phys Chem Chem Phys 4:43–44

    Google Scholar 

  • Close DM (2004) Calculations of the ionization potentials of the DNA bases in aqueous media. J Phys Chem A 108:10378–10379

    Article  Google Scholar 

  • Close DM, Sagstuen E, Nelson WH (1985) ESR study on the guanine cation. J Chem Phys 82:4386–4388

    Article  CAS  Google Scholar 

  • Colson A-O, Sevilla MD (1995) Ab initio molecular orbital calculations of radicals formed by H and OH addition to DNA bases: electron affinities and ionization potentials. J Phys Chem 99:13033–13037

    CAS  Google Scholar 

  • Crespo-Hernández CE, Arce R, Ishikawa Y, Gorb L, Leszczynski J, Close DM (2004) Ab initio energy thresholds of DNA and RNA bases in gas phase and in aqueous solution. J Phys Chem B 108:6373–6377

    Google Scholar 

  • Crich D, Huang W (2001) Dynamics of alkene radical cations/phosphate anion pair formation from nucleotide C4′ radicals. The DNA/RNA paradox revisited. J Am Chem Soc 123:9239–9245

    CAS  PubMed  Google Scholar 

  • Das S, Deeble DJ, Schuchmann MN, von Sonntag C (1984) Pulse radiolytic studies on uracil and uracil derivatives. Protonation of their electron adducts at oxygen and carbon. Int J Radiat Biol 46:7–9

    CAS  Google Scholar 

  • Das S, Deeble DJ, von Sonntag C (1985) Site of H atom attack on uracil and its derivatives in aqueous solution. Z Naturforsch 40c:292–294

    CAS  Google Scholar 

  • Decarroz C, Wagner JR, van Lier JE, Krishna CM, Riesz P, Cadet J (1986) Sensitized photo-oxidation of thymidine by 2-methyl-1,4-naphthoquinone. Characterization of the stable photoproducts. Int J Radiat Biol 50:491–505

    CAS  Google Scholar 

  • Decarroz C, Wagner JR, Cadet J (1987) Specific deprotonation reactions of the pyrimidine radical cation resulting from the menadione mediated photosensitization of 2′-deoxycytidine. Free Rad Res Commun 2:295–301

    CAS  Google Scholar 

  • Deeble DJ, von Sonntag C (1985) The UV absorption spectra of the C(5) and C(6) OH adduct radicals of uracil and thymine derivatives. A pulse radiolysis study. Z Naturforsch 40c:925–928

    CAS  Google Scholar 

  • Deeble DJ, von Sonntag C (1987) Radioprotection of pyrimidines by oxygen and sensitization by phosphate: a feature of their electron adducts. Int J Radiat Biol 51:791–796

    CAS  Google Scholar 

  • Deeble DJ, Das S, von Sonntag C (1985) Uracil derivatives: sites and kinetics of protonation of the radical anions and the UV spectra of the C(5) and C(6) H-atom adducts. J Phys Chem 89:5784–5788

    Article  CAS  Google Scholar 

  • Deeble DJ, Schuchmann MN, Steenken S, von Sonntag C (1990) Direct evidence for the formation of thymine radical cations from the reaction of SO4•− with thymine derivatives: a pulse radiolysis study with optical and conductance detection. J Phys Chem 94:8186–8192

    Article  CAS  Google Scholar 

  • DeFelippis MR, Murthy CP, Faraggi M, Klapper MH (1989) Pulse radiolytic measurement of redox potentials: the tyrosine and tryptophan radicals. Biochemistry 28:4847–4853

    Article  CAS  PubMed  Google Scholar 

  • Delatour T, Douki T, D’Ham C, Cadet J (1998) Photosensitization of thymine nucleobase by benzophenone through energy transfer, hydrogen abstraction and one-electron oxidation. J Photochem Photobiol 44:191–198

    CAS  Google Scholar 

  • Delatour T, Douki T, Gasparutto D, Brochier M-C, Cadet J (1999) Novel vicinal lesion obtained from the oxidative photosensitization of TpdG: characterization and mechanistic aspects. Chem Res Toxicol 11:1005–1013

    Google Scholar 

  • Dias RMB, Vieira AJSC (1997a) Substituent effect on superoxide elimination from peroxyl radicals of adenine and methylated derivatives. J Photochem Photobiol A Chem 117:217–222

    Google Scholar 

  • Dias RMB, Vieira AJSC (1997b) Effect of oxygen on the hydroxylation of adenine by photolytically generated hydroxyl radical. J Photochem Photobiol 109:133–136

    Article  CAS  Google Scholar 

  • Dixon WT, Murphy D (1976) Determination of the acidity constants of some phenol radical cations by means of electron spin resonance. J Chem Soc Faraday Trans 272:1221–1230

    Google Scholar 

  • Dizdaroglu M, Gajewski E (1989) Structure and mechanism of hydroxyl radical-induced formation of a DNA protein cross-link involving thymine and lysine in nucleohistone. Cancer Res 49:3463–3467

    CAS  PubMed  Google Scholar 

  • Dizdaroglu M, Simic MG (1984a) Radiation-induced formation of thymine-thymine crosslinks. Int J Radiat Biol 46:241–246

    CAS  Google Scholar 

  • Dizdaroglu M, Simic MG (1984b) Radiation-induced crosslinking of cytosine. Radiat Res 100:41–46

    CAS  PubMed  Google Scholar 

  • Dizdaroglu M, Simic M (1985a) Radiation-induced crosslinks between thymine and phenylalanine. Int J Radiat Biol 47:63–69

    CAS  Google Scholar 

  • Dizdaroglu M, Simic MG (1985b) Radiation-induced crosslinking of pyrimidine oligonucleotides. Radiat Phys Chem 26:309–316

    CAS  Google Scholar 

  • Dizdaroglu M, von Sonntag C (1973) γ-Radiolyse von Cellobiose in N2O-gesättigter wässriger Lösung, Teil I. Identifizierung der Produkte. Z Naturforsch 28b:635–646

    Google Scholar 

  • Dizdaroglu M, Neuwald K, von Sonntag C (1976) Radiation chemistry of DNA model compounds. IX. Carbohydrate products in the γ-radiolysis of thymidine in aqueous solution. The radicalinduced scission of the N-glycosidic bond. Z Naturforsch 31b:227–233

    CAS  Google Scholar 

  • Dizdaroglu M, Schulte-Frohlinde D, von Sonntag C (1977) γ-Radiolysis of DNA in oxygenated aqueous solution. Structure of an alkali-labile site. Z Naturforsch 32c:1021–1022

    CAS  Google Scholar 

  • Dizdaroglu M, Gajewski E, Reddy P, Margolis SA (1989) Structure of a hydroxyl radical induced DNA-protein cross-link involving thymine and tyrosine in nucleohistone. Biochemistry 28:3625–3628

    Article  CAS  PubMed  Google Scholar 

  • Doddridge ZA, Cullis PM, Jones GDD, Malone ME (1998) 7,8-Dihydro-8-oxo-2′-deoxyguanosine residues in DNA are radiation damage “hot” spots in the direct γ radiation damage pathway. J Am Chem Soc 120:10998–10999

    Article  CAS  Google Scholar 

  • Douki T, Cadet J (1996) Peroxynitrite mediated oxidation of purine bases of nucleosides and isolated DNA. Free Rad Res 24:369–380

    CAS  Google Scholar 

  • Douki T, Cadet J (1999) Modification of DNA bases by photosensitized one-electron oxidation. Int J Radiat Biol 75:571–581

    CAS  PubMed  Google Scholar 

  • Douki T, Cadet J, Ames BN (1996) An adduct between peroxynitrite and 2′-deoxyguanosine: 4,5-dihydro-5-hydroxy-4-(nitrosooxy)-2′-deoxyguanosine. Chem Res Toxicol 9:3–7

    CAS  PubMed  Google Scholar 

  • Douki T, Spinelli S, Ravanat J-L, Cadet J (1999) Hydroxyl radical-induced degradation of 2′-deoxyguanosine under reducing conditions. J Chem Soc Perkin Trans 2 1875–1880

    Google Scholar 

  • Douki T, Rivière J, Cadet J (2002) DNA tandem lesions containing 8-oxo-7,8-dihydroguanine and formamido residues arise from intramolecular addition of thymine peroxyl radicals to guanine. Chem Res Toxicol 15:445–454

    Article  CAS  PubMed  Google Scholar 

  • Dowideit P, Mertens R, von Sonntag C (1996) The non-hydrolytic decay of formyl chloride into CO and HCl in aqueous solution. J Am Chem Soc 118:11288–11292

    Article  CAS  Google Scholar 

  • Dreyfus M, Bensaude O, Dodin G, Dubois JE (1976) Tautomerism in cytosine and 3-methylcytosine. A thermodynamic and kinetic study. J Am Chem Soc 98:6338–6349

    Article  CAS  PubMed  Google Scholar 

  • Duarte V, Muller JG, Burrows CJ (1999) Insertion of dGMP and dAMP during in vitro DNA synthesis opposite an oxidized form of 7,8-dihydro-8-oxoguanine. Nucleic Acids Res 27:496–502

    Article  CAS  PubMed  Google Scholar 

  • Duarte V, Gasparutto D, Yamaguchi LF, Ravanat J-L, Martinez CR, Medeiros MHG, di Mascio P, Cadet J (2000) Oxaluric acid as the major product of singlet oxygen-mediated oxidation of 8-oxo-7,8-dihydroguanine in DNA. J Am Chem Soc 122:12622–12628

    Article  CAS  Google Scholar 

  • Ducolomb R, Cadet J, Teoule R (1971) Effect des rayon γ sur l’uracile et l’acide uridylique en solution aqueuse aérée. CR Acad Sci Paris Ser D 273:2647–2649

    CAS  Google Scholar 

  • Dulcic A, Herak JN (1973) Radiation-induced pair-wise radical formation in single crystals of thymine. Biochim Biophys Acta 319:109–115

    CAS  PubMed  Google Scholar 

  • Ekpenyong KI, Shetlar MD (1979) Photochemical reactions of cytosine N-methyl analogs in alcoholic solutions. Photochem Photobiol 30:455–461

    CAS  Google Scholar 

  • Elad D (1976) Photoproducts of purines. In: Wang SY (ed) Photochemistry and photobiology of nucleic acids. Academic Press, New York, pp 357–380

    Google Scholar 

  • Elad D, Rosenthal I (1969) Photochemical alkylation of caffeine with amino-acids. Chem Commun 905–906

    Google Scholar 

  • Elad D, Salomon J (1971) Ultraviolet-and radiation-induced reactions of caffeine with amines. Tetrahedron Lett 12:4783–4784

    Article  Google Scholar 

  • Elad D, Rosenthal I, Steinmaus H (1969) Radiation-and ultraviolet-induced reactions of caffeine with alcohols. Chem Commun 305–306

    Google Scholar 

  • Emanuel CJ, Newcomb M, Ferreri C, Chatgilialoglu C (1999) Kinetics of 2′-deoxyuridine-1′-yl radical reactions. J Am Chem Soc 121:2927–2928

    Article  CAS  Google Scholar 

  • Faraggi M, Klapper MH (1993) Reduction potentials determination of some biochemically important free radicals. Pulse radiolysis and electrochemical methods. J Chim Phys 90:711–744

    CAS  Google Scholar 

  • Faraggi M, Klapper MH (1994) One electron oxidation of guanine and 2′-deoxyguanosine by the azide radical in alkaline solutions. J Chim Phys 91:1062–1069

    CAS  Google Scholar 

  • Faraggi M, Broitman F, Trent JB, Klapper MH (1996) One-electron oxidation reactions of some purine and pyrimidine bases in aqueous solutions. Electrochemical and pulse radiolysis studies. J Phys Chem 100:14751–14761

    Article  CAS  Google Scholar 

  • Farrer BT, Thorp HH (2000) Redox pathways in DNA oxidation: kinetic studies of guanine and sugar oxidation by para-substituted derivatives of oxoruthenium(IV). Inorg Chem 39:44–49

    CAS  PubMed  Google Scholar 

  • Fasman GD (1975) Handbook of biochemistry and molecular biology. Nucleic acids. CRC Press, Cleveland

    Google Scholar 

  • Fielden EM, Stevens GC, Phillips JM, Scholes G, Willson RL (1970) Effects due to non-equilibrium pH conditions in the radiolysis of aqueous systems. Nature 225:632–634

    Article  CAS  PubMed  Google Scholar 

  • Flossmann W, Hüttermann J, Müller A, Westhof E (1973) Electron spin resonance of free radicals and radical pairs in irradiated single crystal of 1-methyluracil. Z Naturforsch 28c:523–532

    Google Scholar 

  • Flossmann W, Müller A, Westhof E (1975a) Electron spin resonance study of radiation-produced radical pairs in single crystals of 1-methyluracil. Mol Phys 29:703–712

    CAS  Google Scholar 

  • Flossmann W, Westhof E, Müller A (1975b) Radical formation in salts of pyrimidines. I. 1-Methyluracil. HBr crystals. Int J Radiat Biol 28:105–115

    CAS  Google Scholar 

  • Flossmann W, Westhof E, Müller A (1976) Light-induced displacement of hydrogen in pyrimidine H-addition radicals. J Chem Phys 64:1688–1691

    Article  CAS  Google Scholar 

  • Flyunt R, Bazzanini R, Chatgilialoglu C, Mulazzani QG (2000) Fate of the 2′-deoxyadenosin-5′-yl radical under anaerobic conditions. J Am Chem Soc 122:4225–4226

    Article  CAS  Google Scholar 

  • Frelon S, Douki T, Cadet J (2002) Radical oxidation of the adenine moiety of nucleoside and DNA: 2-hydroxy-2′-deoxyadenosine is a minor decomposition product. Free Rad Res 36:499–508

    Article  CAS  Google Scholar 

  • Frimer AA, Havron A, Leonov D, Sperling J, Elad D (1976) Ultraviolet and γ-ray-induced free-radical reactions of nucleic acid constituents. Selectivity of some reactions for purines. Suppression of the reactivity of pyrimidines. J Am Chem Soc 98:6026–6033

    Article  CAS  PubMed  Google Scholar 

  • Fuciarelli AF, Sisk E, Zimbrick JD (1994) Electron migration in oligonucleotides upon γ-irradiation in solution. Int J Radiat Biol 65:409–418

    CAS  PubMed  Google Scholar 

  • Fujita S (1984) Radiolysis of nucleosides in aqueous solutions: base liberation by the base attack mechanism. Int J Radiat Biol 45:371–377

    CAS  Google Scholar 

  • Fujita S, Steenken S (1981) Pattern of OH radical addition to uracil and methyl-and carboxyl-substituted uracils. Electron transfer of OH adducts with N,N,N′,N′-tetramethyl-p-phenylenediamine and tetranitromethane. J Am Chem Soc 103:2540–2545

    Article  CAS  Google Scholar 

  • Fujita S, Nagata Y, Dohmaru T (1988) Radicals produced by the reactions of SO4 with uridine and its derivatives. Studies by pulse radiolysis and γ-radiolysis. Int J Radiat Biol 54:417–427

    CAS  PubMed  Google Scholar 

  • Fujita S, Horii H, Taniguchi R, Lakshmi S, Renganathan R (1996) Pulse radiolytic investigations on the reaction of the 6-yl radicals of the uracils with Cu(II)-amino acid complexes. Radiat Phys Chem 48:643–649

    CAS  Google Scholar 

  • Gajewski E, Dizdaroglu M (1990) Hydroxyl radical induced cross-linking of cytosine and tyrosine in nucleohistone. Biochemistry 29:977–980

    CAS  PubMed  Google Scholar 

  • Gajewski E, Fuciarelli AF, Dizdaroglu M (1988) Structure of hydroxyl radical-induced DNA-protein crosslinks in calf thymus nucleohistone in vitro. Int J Radiat Biol 54:445–459

    CAS  PubMed  Google Scholar 

  • Gajewski E, Rao G, Nackerdien Z, Dizdaroglu M (1990) Modification of DNA bases in mammalian chromatin by radiation-generated free radicals. Biochemistry 29:7876–7882

    CAS  PubMed  Google Scholar 

  • Garner A, Scholes G (1985) Mechanism of the photohydration of pyrimidines: a flash photolysis study. Photochem Photobiol 41:259–265

    CAS  Google Scholar 

  • Gasparutto D, Ravanat J-L, Gérot O, Cadet J (1999) Characterization and chemical stability of photooxidized oligonucleotides that contain 2,2-diamino-4-[(2-deoxy-β-D-erythro-pentofuranosyl)-amino]-5(2H)-oxazolone. J Am Chem Soc 120:10283–10286

    Google Scholar 

  • Geimer J, Beckert D (1998) Study of radical pairs generated by photoreduction of anthraquinone-2,6-disulfonic acid with thymine by Fourier transform electron paramagnetic resonance. Chem Phys Lett 288:449–458

    Article  CAS  Google Scholar 

  • Geimer J, Beckert D (1999) Direct evidence for 1-methylthymine radical cations and their transformation to successor radicals by Fourier transform electron paramagnetic resonance in the nanosecond time scale. J Phys Chem A 103:3991–3998

    Article  CAS  Google Scholar 

  • Geimer J, Brede O, Beckert D (1997) Fourier Transform EPR study of N-centered pyrimidine radicals in the nanosecond time scale. Chem Phys Lett 276:411–417

    Article  CAS  Google Scholar 

  • Geimer J, Hildenbrand K, Naumov S, Beckert D (2000) Radicals formed by electron transfer from cytosine and 1-methylcytosine to the triplet state of anthraquinone-2,6-disulfonic acid. A Fourier-transform EPR study. Phys Chem Chem Phys 2:4199–4206

    Article  CAS  Google Scholar 

  • Giese B, Beyrich-Graf X, Erdmann P, Giraud L, Imwinkelried P, Müller SN, Schwitter U (1995) Cleavage of single-stranded 4′-oligonucleotide radicals in the presence of O2. J Am Chem Soc 117:6146–6247

    Article  CAS  Google Scholar 

  • Gilbert E, Schulte-Frohlinde D (1970) Photolyse von 5-Joduracil in wässriger, sauerstoffgesättigter Lösung. Z Naturforsch 25b:492–495

    Google Scholar 

  • Gimisis T, Chatgilialoglu C (1996) 1,5-Radical translocation protocol for the generation of C-1′ radicals in nucleosides. Synthesis of spiro nucleosides through a rare 5-endo-trig cyclization. J Org Chem 61:1908–1908

    Article  CAS  Google Scholar 

  • Gimisis T, Ialongo G, Zamboni M, Chatgilialoglu C (1995) Radical transformations of nucleosides with (Me3Si)3SiH. Generation of a C-1′ radical through 1,2-migration of an acyloxy group. Tetrahedron Lett 36:6781–6784

    CAS  Google Scholar 

  • Gimisis T, Ialongo G, Chatgilialoglu C (1998) Generation of C-1′ radicals through a β(acyloxy)alkyl rearrangement in modified purine and pyrimidine nucleosides. Tetrahedron 54:573–592

    Article  CAS  Google Scholar 

  • Goodman BK, Greenberg MM (1996) Independent generation and reactivity of 2′-deoxyurid-1′-yl. J Org Chem 61:2–3

    Article  CAS  Google Scholar 

  • Görner H (1993) Acetone-sensitized photolysis of 5-iodouracil and 5-iodouridine in aqueous solution in the presence of alcohols: free radical chain mechanism. J Photochem Photobiol A Chem 72:197–208

    Article  Google Scholar 

  • Grachev SA, Kropachev EV, Litvyakova GI (1983) Synthesis of 5-S-cysteamine-6-hydroxythymine and evidence of its formation in the γ radiolysis of aqueous solutions of thymine and cysteamine. Bull Acad Sci USSR, Chem Ser (Engl Trans) 1595–1600

    Google Scholar 

  • Grachev SA, Kropachev EV, Litvyakova GI (1986) Addition of cysteamine to thymine and thymidine monophosphate initiated by γ-irradiation. Bull Acad Sci USSR, Chem Ser (Engl Trans) 10:2178–2184

    Google Scholar 

  • Greenberg MM, Hantosi Z, Wiederholt CJ, Rithner CD (2001) Studies on N4-(2-deoxy-D-pentofuranosyl)-4,6-diamino-5-formamidopyrimidine (FAPYdA) and N6(2-deoxy-D-pentofuranosyl)-6-diamino-5-formamido-4-hydroxyprimidine (FAPYdG). Biochemistry 40:15856–15861

    Article  CAS  PubMed  Google Scholar 

  • Greenstock CL, Dunlop I (1973) Pulse radiolysis studies of nitrofurans: Chemical radiosensitization. Radiat Res 56:428–440

    CAS  PubMed  Google Scholar 

  • Greenstock CL, Shierman E (1975) Radiosensitivity and hydroxyl radical reactivity of phosphate esters as measured by radiation-induced dephosphorylation. Int J Radiat Biol 28:1–12

    CAS  Google Scholar 

  • Greenstock CL, Raleigh J, McDonald E, Whitehouse R (1973a) Nucleotide radical oxidation and addition reactions with cellular radiosensitizers. Biochem Biophys Res Commun 52:276–283

    Article  CAS  PubMed  Google Scholar 

  • Greenstock CL, Shragge PC, Hunt JW (1973b) Kinetics of OH and H+ reactions of pyrimidines and purines by pulse radiolysis. J Phys Chem 77:1624–1628

    CAS  PubMed  Google Scholar 

  • Gromova M, Nardin R, Cadet J (1998) Direct effect of heavy ions and electrons on 2′-deoxyguanosine in the solid state. J Chem Soc Perkin Trans 2 1365–1374

    Google Scholar 

  • Gromova M, Balanzat E, Gervais B, Nardin R, Cadet J (1999) The direct effect of heavy ions and electrons on thymidine in the solid state. Int J Radiat Biol 74:81–97

    Google Scholar 

  • Hagen U, Keck K, Kröger H, Zimmermann F, Lücking T (1965) Ultraviolet light inactivation of the priming ability of DNA in the RNA polymerase system. Biochim Biophys Acta 95:418–425

    CAS  PubMed  Google Scholar 

  • Hahn BS, Wang SY (1977) The preparation of trans-pyrimidine glycols by near-UV irradiation. Biochem Biophys Res Commun 77:947–952

    Article  CAS  PubMed  Google Scholar 

  • Haromy TP, Raleigh J, Sundaralingam M (1980) Enzyme-bound conformations of nucleotide substrates. X-ray structure and absolute configuration of 8,5′-cycloadenosine monohydrate. Biochemistry 19:1718–1722

    Article  CAS  PubMed  Google Scholar 

  • Hatta H, Zhou L, Mori M, Teshima S, Nishimoto S (2001) N(1)-C(5′)-linked dimer hydrates of 5-substituted uracils produced by anodic oxidation in aqueous solution. J Org Chem 66:2232–2239

    Article  CAS  PubMed  Google Scholar 

  • Hayon E (1969) Optical-absorption spectra of ketyl radicals and radical anions of some pyrimidines. J Chem Phys 51:4881–4892

    Article  CAS  Google Scholar 

  • Hayon E, Simic M (1973) Addition of hydroxyl radicals to pyrimidine bases and electron transfer reactions of intermediates to quinones. J Am Chem Soc 95:1029–1035

    CAS  PubMed  Google Scholar 

  • Haysom HR, Phillips JM, Scholes G (1972) Formation of carbonium ions from dihydropyrimidyl radicals in the γ-radiolysis of aqueous solutions of dihydropyrimidines. J Chem Soc Chem Commun 1082–1083

    Google Scholar 

  • Haysom HR, Phillips JM, Richards JT, Scholes G, Willson RL (1975) Pulse radiolysis of aqueous solutions of dihydropyrimidines: the role of carbonium ions. In: Adams GE, Fielden EM, Michael BD (eds) Fast processes in radiation chemistry and biology. Wiley, London, pp 241–246

    Google Scholar 

  • Hazra DK, Steenken S (1983) Pattern of OH radical addition to cytosine and 1-, 3-, 5-and 6-substituted cytosines. Electron transfer and dehydration reactions of the OH adducts. J Am Chem Soc 105:4380–4386

    Article  CAS  Google Scholar 

  • Hedrick WR, Webb MD, Zimbrick JD (1982) Spin trapping of reactive uracilyl radicals produced by ionizing radiation in aqueous solutions. Int J Radiat Biol 41:435–442

    CAS  Google Scholar 

  • Heelis PF, Deeble DJ, Kim S-T (1992) Splitting of cis-syn cyclobutane thymine-thymine dimers by radiolysis and its relevance to enzymatic photoreactivation. Int J Radiat Biol 62:137–143

    CAS  PubMed  Google Scholar 

  • Hems G, Eidinoff ML (1958) Effect of X-irradiation on aqueous solutions of adenosine diphosphate. Radiat Res 9:305–311

    CAS  PubMed  Google Scholar 

  • Henriksen T, Snipes W (1970) Radiation-induced radicals in thymine: ESR studies of single crystals. Radiat Res 42:255–269

    CAS  PubMed  Google Scholar 

  • Hickerson RP, Prat F, Muller CE, Foote CS, Burrows CJ (1999) Sequence and stacking dependence of 8-oxoguanine oxidation: camparison of one-electron vs singlet oxygen mechanism. J Am Chem Soc 121:9423–9428

    CAS  Google Scholar 

  • Hildenbrand K (1990) The SO4−•-induced oxidation of 2′-deoxyuridine-5′-phosphate, uridine-5′-phosphate and thymidine-5′-phosphate. An ESR study in aqueous solution. Z Naturforsch 45c:47–58

    Google Scholar 

  • Hildenbrand K (1995) Spin-trapping studies of the reaction of the sulfate radical ion with N1-substituted pyrimidine bases. Comparison with continuous-flow electron paramagnetic resonance experiments. J Chem Soc Perkin Trans 2 2153–2162

    Google Scholar 

  • Hildenbrand K, Schulte-Frohlinde D (1997) Time-resolved EPR studies on the reaction rates of peroxyl radicals of poly(acrylic acid) and of calf thymus DNA with glutathione. Re-examination of a rate constant for DNA. Int J Radiat Biol 71:377–385

    CAS  PubMed  Google Scholar 

  • Hildenbrand K, Behrens G, Schulte-Frohlinde D, Herak JN (1989) Comparison of the reaction OH and SO4•− radicals with pyrimidine nucleosides. An electron spin resonance study in aqueous solution. J Chem Soc Perkin Trans 2 283–289

    Google Scholar 

  • Hissung A, von Sonntag C (1978) Radiolysis of cytosine, 5-methylcytosine and 2′-deoxycytidine in deoxygenated aqueous solution. A pulse spectroscopic and pulse conductometric study of the OH adduct. Z Naturforsch 33b:321–328

    CAS  Google Scholar 

  • Hissung A, von Sonntag C (1979) The reaction of solvated electrons with cytosine, 5-methylcytosine and 2′-deoxycytidine in aqueous solution. The reaction of the electron adduct intermediates with water, p-nitroacetophenone and oxygen. A pulse spectroscopic and pulse conductometric study. Int J Radiat Biol 35:449–458

    CAS  Google Scholar 

  • Hissung A, von Sonntag C, Veltwisch D, Asmus K-D (1981a) The reaction of the 2′-deoxyadenosine electron adduct in aqueous solution. The effects of the radiosensitizer p-nitroacetophenone. A pulse spectroscopic and pulse conductometric study. Int J Radiat Biol 39:63–71

    CAS  Google Scholar 

  • Hissung A, Isildar M, von Sonntag C, Witzel H (1981b) Radiolysis of aqueous solutions of nucleosides halogenated at the sugar moiety. Int J Radiat Biol 39:185–193

    CAS  Google Scholar 

  • Hofer T (2001) Oxidation of 2′-deoxyguanosine by H2O2-ascorbate: evidence against free OH and thermodynamic support for two-electron reduction of H2O2. J Chem Soc Perkin Trans 2 210–213

    Google Scholar 

  • Hoffman A-K, Hüttermann J (2000) Products from polycrystalline DNA constituents after X-irradiation and heavyion bombardment: formation of the 5,6-dihydroadduct in thymidine 5′-monophosphate and release of unaltered bases in nucleotides. Int J Radiat Biol 76:1167–1178

    Google Scholar 

  • Hole EO, Nelson WH, Close DM, Sagstuen E (1987) ESR and ENDOR study of the guanine cation: secondary product in 5′-dGMP. J Chem Phys 86:5218–5219

    Article  CAS  Google Scholar 

  • Hole EO, Sagstuen E, Nelson WH, Close DM (1989) Free radical formation in single crystals of 2′-deoxyguanosine 5′-monophosphate; and guanine hydrobromide monohydrate after X-irradiation at 10 and 65 K: An ESR, ENDOR and FSE study. Free Rad Res Commun 6:87–90

    CAS  Google Scholar 

  • Hole EO, Nelson WH, Sagstuen E, Close DM (1992a) Free radical formation in single crystals of 2′-deoxyguanisine 5′-monophosphate tetrahydrate disodium salt: an EPR/ENDOR study. Radiat Res 129:119–138

    CAS  PubMed  Google Scholar 

  • Hole EO, Sagstuen E, Nelson WH, Close DM (1992b) The structure of the guanine cation: ESR/ENDOR of cyclic guanosine monophosphate single crystals after X irradiation at 10 K. Radiat Res 129:1–10

    CAS  PubMed  Google Scholar 

  • Holian J, Garrison WM (1966) Radiation-induced oxidation of cytosine and uracil in aqueous solution of copper(II). Nature 212:394–395

    CAS  Google Scholar 

  • Hutchinson F (1973) The lesions produced by ultraviolet light in DNA containing 5-bromouracil. Q Rev Biophys 6:201–246

    CAS  PubMed  Google Scholar 

  • Hutchinson F (1985) Chemical changes induced in DNA by ionizing radiation. Progr Nucleic Acid Res Mol Biol 32:115–154

    CAS  Google Scholar 

  • Hutchinson F (1987) Yearly review. A review of some topics concerning mutagenesis by ultraviolet light. Photochem Photobiol 45:897–903

    CAS  PubMed  Google Scholar 

  • Hutchinson F, Köhnlein W (1980) The photochemistry of 5-bromouracil and 5-iodouracil in DNA. Progr Molec Subcell Biol 7:1–42

    CAS  Google Scholar 

  • Hüttermann J (1970) Electron-spin-resonance spectroscopy of radiation-induced free radicals in irradiated single crystals of thymine monohydrate. Int J Radiat Biol 17:249–259

    Google Scholar 

  • Hüttermann J (1982) Solid-state radiation chemistry of DNA and its constituents. Ultramicroscopy 10:25–40

    PubMed  Google Scholar 

  • Hüttermann J (1991) Radical ions and their reactions in DNA and its constituents. Contribution of electron spin resonance spectroscopy. In: Lund A, Shiotani M (eds) Radical ionic systems. Kluver, Dordrecht, pp 435–462

    Google Scholar 

  • Hüttermann J, Ward JF, Myers LS Jr (1971) Electron spin resonance studies of free radicals in irradiated single crystals of 5-methylcytosine. Int J Radiat Phys Chem 3:117–129

    Article  Google Scholar 

  • Hüttermann J, Ohlmann J, Schaefer A, Gatzweiler W (1991) The polymorphism of a cytosine anion studied by electron paramagnetic resonance spectroscopy. Int J Radiat Biol 59:1297–1311

    PubMed  Google Scholar 

  • Hwang CT, Stumpf CL, Yu Y-Q, Kentämaa HI (1999) Intrinsic acidity and redox properties of the adenine radical cation. Int J Mass Spectrom 182/183:253–259

    CAS  Google Scholar 

  • Ide H, Otsuki N, Nishimoto S, Kagiya T (1985) Photoreduction of thymine glycol sensitized by aromatic amines in aqueous solution. J Chem Soc Perkin Trans 2 1387–1392

    Google Scholar 

  • Idris Ali KM, Scholes G (1980) Analysis of radiolysis products of aqueous uracil + N2O solutions. J Chem Soc Faraday Trans 176:449–456

    Google Scholar 

  • Infante GA, Jirathana P, Fendler JH, Fendler EJ (1973) Radiolysis of pyrimidines in aqueous solutions, part I. Product formation in the interaction of e(aq), H, OH and Cl2•− with thymine. J Chem Soc Faraday Trans 169:1586–1596

    Google Scholar 

  • Infante GA, Jirathana P, Fendler EJ, Fendler JH (1974) Radiolysis of pyrimidines in aqueous solutions, part 2. Product formation in the interaction of e(aq), H, OH and Cl2•− with uracil. J Chem Soc Faraday Trans 170:1162–1170

    Google Scholar 

  • Ioele M, Chatgilialoglu C, Mulazzani QG (1998) Reactions of oxide radical ion (O) with pyrimidine and purine derivatives. J Phys Chem A 102:6259–6265

    Article  CAS  Google Scholar 

  • Ioele M, Bazzanini R, Chatgilialoglu C, Mulazzani QG (2000) Chemical radiation studies or 8-bromoguanosine in aqueous solutions. J Am Chem Soc 122:1900–1907

    Article  CAS  Google Scholar 

  • Ishida A, Toki S, Takamuku S (1985) Hydroxymethylation of 1,3-dimethyluracil and its derivatives induced by a photoredox system of EuIII/EuII in MeOH. J Chem Soc Chem Commun 1481–1483

    Google Scholar 

  • Ishida A, Toki S, Takamuku S (1986) Radiation-induced reactions of 1,3-dimethyluracil and its derivatives with alcohols. Comparison with the photochemical reactions. Radiat Phys Chem 27:165–168

    CAS  Google Scholar 

  • Ito T, Shinohara H, Hatta H, Nishimoto S-I (1999) Radiation-induced and photosensitized splitting of C5-C5′-linked dihydrothymine dimers: product and laser flash photolysis studies on the oxidative splitting mechanism. J Phys Chem A 103:8413–8420

    Article  CAS  Google Scholar 

  • Ito T, Shinohara H, Hatta H, Fujita S-I, Nishimoto S-I (2000) Radiation-induced and photosensitized splitting of C5-C5′-linked dihydrothymine dimers. 2. Conformational effects on the reductive splitting mechanism. J Phys Chem A 104:2886–2893

    Article  CAS  Google Scholar 

  • Ito T, Shinohara H, Hatta H, Nishimoto S-I (2002) Stereoisomeric C5-C5′-linked dehydrothymine dimmers produced by radiolytic one-electron reduction of thymine derivatives in anoxic solution: structural characteristics in reference to cyclobutane photodimers. J Org Chem 64:5100–5108

    Google Scholar 

  • Jagannadham V, Steenken S (1984) One-electron reduction of nitrobenzenes by α-hydroxyalkyl radicals via addition/elimination. An example of an organic inner-sphere electron-transfer reaction. J Am Chem Soc 106:6542–6551

    Article  CAS  Google Scholar 

  • Jagannadham V, Steenken S (1988a) Reactivity of α-heteroatom-substituted alkyl radicals with nitrobenzenes in aqueous solution: an entropy-controlled electron-transfer/addition mechanism. J Am Chem Soc 110:2188–2192

    Article  CAS  Google Scholar 

  • Jagannadham V, Steenken S (1988b) One-electron reduction of nitrobenzenes by OH and H radical adducts to 6-methyluracil and 6-methylisocytosine via electron transfer and addition elimination. Effect of substituents on rates and activation parameters for formation and heterolysis of nitroxylyl-type tetrahedral intermediates. J Phys Chem 92:111–118

    Article  CAS  Google Scholar 

  • Janik I, Ulanski P, Rosiak JM, von Sonntag C (2000) Hydroxyl-radical-induced reactions of the poly(vinyl methyl ether) model 2,4-dimethoxypentane in the absence and presence of dioxygen: a pulse radiolysis and product study. J Chem Soc Perkin Trans 2 2034–2040

    Google Scholar 

  • Jaquet L, Kelly JM, Kirsch-De Mesmaeker A (1995) Photoadduct between tris(1,4,5,8-tetraazaphena nthrene)ruthenium(II) and guanosine monophosphate-a model for a new covalent binding of metal complexes to DNA. J Chem Soc Chem Commun 913–914

    Google Scholar 

  • Jaussaud C, Païssé O, Faure R (2000) Photocatalysed degradation of uracil in aqueous titanium dioxide suspensions: mechanisms, pH and cadmium chloride effects. J Photochem Photobiol A Chem 130:157–162

    Article  CAS  Google Scholar 

  • Jellinek T, Johns RB (1970) The mechanism of photochemical addition of cysteine to uracil and formation of dihydrouracil. Photochem Photobiol 11:349–359

    CAS  PubMed  Google Scholar 

  • Jiang Y, Lin W-Z, Yao S-D, Lin N-Y, Zhu D-Y (1999a) Pulse radiolytic study of electron transfer reaction for fast repair of the one-electron oxidized radicals of dAMP and dGMP by hydroxycinnamic acid derivatives. Radiat Phys Chem 54:349–353

    CAS  Google Scholar 

  • Jiang Y, Lin W-Z, Yao S-D, Lin N-Y, Zhu D-Y (1999b) Fast repair of oxidizing OH adducts of DNA by hydroxycinnamic acid derivatives. A pulse radiolytic study. Radiat Phys Chem 54:355–359

    CAS  Google Scholar 

  • Jin F, Leitich J, von Sonntag C (1993) The superoxide radical reacts with tyrosine-derived phenoxyl radicals by addition rather than by electron transfer. J Chem Soc Perkin Trans 2 1583–1588

    Google Scholar 

  • Jin F, Leitich J, von Sonntag C (1995) Photolysis (λ = 254 nm) of phenylalanine in aqueous solution. J Photochem Photobiol A Chem 85:101–109

    Article  CAS  Google Scholar 

  • Jolibois F, Voituriez L, Grand A, Cadet J (1996) Conformational and electronic properties of the two cis (5S,6R) and trans (5R,6S) diastereomers of 5,6-dihydroxy-5,6-dihydrothymidine: X-ray and theoretical studies. Chem Res Toxicol 9:298–305

    Article  CAS  PubMed  Google Scholar 

  • Jolibois F, Cadet J, Grand A, Subra R, Rega N, Barone V (1998) Structures and spectroscopic characteristics of 5,6-dihydro-6-thymyl and 5,6-dihydro-5-thymyl radicals by an integrated quantum mechanical approach including electronic, vibrational, and solvent effects. J Am Chem Soc 120:1864–1871

    Article  CAS  Google Scholar 

  • Jovanovic SV, Simic MG (1986) One-electron redox potentials of purines and pyrimidines. J Phys Chem 90:974–978

    CAS  Google Scholar 

  • Jovanovic SV, Simic MG (1989) The DNA guanyl radical: kinetics and mechanisms of generation and repair. Biochim Biophys Acta 1008:39–44

    CAS  PubMed  Google Scholar 

  • Jovanovic SV, Steenken S, Simic MG (1991) Kinetics and energetics of one-electron-transfer reactions involving tryptophan neutral and cation radicals. J Phys Chem 95:684–687

    CAS  Google Scholar 

  • Kagiya T, Kimura R, Komuro C, Sakano K, Nishimoto S (1983) Promotion effect of 2,2,6,6-tetramethylpiperidine-1-oxyls on the radiolytic hydroxylation of thymine in deaerated aqueous solution. Chem Lett 1471–1474

    Google Scholar 

  • Karam LR, Simic MG, Dizdaroglu M (1986) Free radical-induced cross-linking of polydeoxythymidylic acid in deoxygenated aqueous solution. Int J Radiat Biol 49:67–75

    CAS  Google Scholar 

  • Kasai H, Nishimura S (1984) Hydroxylation of deoxyguanosine at the C-8 position by ascorbic acid and other reducing agents. Nucleic Acids Res 12:2137–2145

    CAS  PubMed  Google Scholar 

  • Kawai K, Saito I (1999) Intrastrand 2′β hydrogen abstraction of 5′-adjacent deoxyguanosine by deoxyuridin-5-yl in Z-form DNA. Tetrahedron Lett 40:2589–2592

    CAS  Google Scholar 

  • Kawai K, Wata Y, Ichinose N, Majima T (2000) Selective enhancement of the one-electron oxidation of guanine by base paring with cytosine. Angew Chem Int Ed 39:4327–4329

    Article  CAS  Google Scholar 

  • Keck K, Hagen U, Friebolin H (1966) Bildung eines Cyclonucleotids bei Röntgenbestrahlung von Adenosin-monophosphat. Naturwissenschaften 53:304–305

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi Y, Kubo H, Kinoshita T (1987) Fluorometric determination of guanidino compounds by new postcolumn derivatization system using reversed-phase ion-pair high-performance liquid chromatography. Anal Biochem 160:392–398

    Article  CAS  PubMed  Google Scholar 

  • Kochetkov NK, Kudryashov LI, Yarovaya SM, Bortsova EI (1965) Radiation chemistry of carbohydrates. IV. Radiolysis of aqueous solutions of lactose and cellobiose. J Gen Chem USSR 35:1195–1197

    Google Scholar 

  • Kochetkov NK, Kudryashov LI, Yarovaya SMB, Chizhov OS (1968) Radiation chemistry of the carbohydrates. IX. Formation of deoxysugars in the radiolysis of aqueous solutions of cellobiose and lactose. J Gen Chem USSR 38:2297–2303

    Google Scholar 

  • Köster R, Asmus K-D (1971) Die Reaktionen chlorierter Äthylene mit hydratisierten Elektronen und OH-Radikalen in wässriger Lösung. Z Naturforsch 26b:1108–1116

    Google Scholar 

  • Krishna CM, Decarroz C, Wagner JR, Cadet J, Riesz P (1987) Menadione sensitized photooxidation of nucleic acid and protein constituents. An ESR and spin-trapping study. Photochem Photobiol 46:175–182

    CAS  PubMed  Google Scholar 

  • Krüger O, Wille U (2001) Oxidative cleavage of a cyclobutane pyrimidine dimer by photochemically generated nitrate radicals (NO3.). Org Lett 10:1455–1458

    Google Scholar 

  • Kumar MR, Adinarayana M (2001) Kinetics and mechanism of protection of thymine from phosphate radical anion under anoxic conditions. Int J Chem Kinet 33:271–275

    CAS  Google Scholar 

  • Kumar MR, Rao MT, Adinarayana M (2000) Phosphate radical induced oxidation of pyrimidine bases in aqueous solution. Indian J Biochem Biophys 37:13–17

    CAS  PubMed  Google Scholar 

  • Lal M, Rao R, Fang X, Schuchmann H-P, von Sonntag C (1997) Radical-induced oxidation of dithiothreitol in acidic oxygenated aqueous solution: a chain reaction. J Am Chem Soc 119:5735–5739

    Article  CAS  Google Scholar 

  • Leitzke A, Flyunt R, Theruvathu JA, von Sonntag C (2003) Ozonolysis of vinyl compounds, CH2=CHX, in aqueous solution-the chemistries of the ensuing formyl compounds and hydroperoxides. Org Biomol Chem 1:1012–1019

    Article  CAS  PubMed  Google Scholar 

  • Leonov D, Elad D (1974a) Ultraviolet-and γ-ray-induced reactions of nucleic acid constituents. Reactions of purines with ethers and dioxolane. J Org Chem 39:1470–1473

    Article  CAS  Google Scholar 

  • Leonov D, Elad D (1974b) Photochemical and γ-ray-induced reactions of nucleic acid constituents. Suppression of the reactivity of pyrimidines in the presence of purines. J Am Chem Soc 96:5635–5637

    Article  CAS  PubMed  Google Scholar 

  • Leonov D, Salomon J, Sasson S, Elad D (1973) Ultraviolet-and γ-ray-induced reactions of nucleic acid constituents with alcohols. On the selectivity of these reactions for purines. Photochem Photobiol 17:465–468

    CAS  Google Scholar 

  • Livneh E, Tel-Or S, Sperling J, Elad D (1982) Light-induced free-radical reactions of purines and pyrimidines in deoxyribonucleic acid. Effect of structure and base sequence on reactivity. Biochemistry 21:3698–3703

    Article  CAS  PubMed  Google Scholar 

  • Lomoth R, Naumov S, Brede O (1999) Transients in the oxidation of pyrimidines with SO4•−: structure and reactivity of the resulting radicals. J Phys Chem A 103:6571–6579

    CAS  Google Scholar 

  • Lu C, Lin W, Wang W, Han Z, Yao S, Lin N (2000) Riboflavin(VB2) photosensitized oxidation of 2′-deoxyguanosine-5′-monophosphate (dGMP) in aqueous solution: a transient intermediates study. Phys Chem Chem Phys 2:329–334

    CAS  Google Scholar 

  • Luke TL, Mohan H, Manoj VM, Manoj P, Mittal JP, Aravindakumar CT (2003) Reaction of oxide radical ion (O•−) with substituted pyrimidines. Res Chem Intermed 28:303–312

    Google Scholar 

  • Luo W, Muller JG, Rachlin EM, Burrows CJ (2000) Characterization of spiroiminodihydantoin as a product of one-electron oxidation of 8-oxo-7,8-dihydroguanosine. Org Lett 2:613–616

    Article  CAS  PubMed  Google Scholar 

  • Luo W, Muller JG, Burrows CJ (2001a) The pH-dependent role of superoxide in riboflavin-catalyzed photooxidation of 8-oxo-7,6-dihydroguanosine. Org Lett 3:2801–2804

    Article  CAS  PubMed  Google Scholar 

  • Luo W, Muller JG, Rachlin EM, Burrows CJ (2001b) Characterization of hydantoin products from one-electron oxidation of 8-oxo-7,8-dihydroguanosine in a nucleoside model. Chem Res Toxicol 14:927–938

    Article  CAS  PubMed  Google Scholar 

  • Lü JM, Geimer J, Naumov S, Beckert D (2001) A Fourier transform EPR study of uracil and thymine radical anions in aqueous solution. Phys Chem Chem Phys 3:952–956

    Google Scholar 

  • Lymar SV, Jiang Q, Hurst JK (1999) Mechanism of carbon dioxide-catalyzed oxidation of tyrosine by peroxynitrite. Biochemistry 35:7855–7861

    Google Scholar 

  • Ma J, Lin W, Wang W, Han Z, Yao S, Lin N (2000) Triplet state mechanism for electron transfer oxidation of DNA. J Photochem Photobiol B Biol 57:76–81

    CAS  Google Scholar 

  • Maeda M, Nushi K, Kawazoe Y (1974) Studies on chemical alterations of nucleic acids and their components VII. C-alkylation of purine bases through free radical process catalyzed by ferrous ion. Tetrahedron 30:2677–2682

    Article  CAS  Google Scholar 

  • Malone ME, Cullis PM, Symons MCR, Parker AW (1995) Biphotonic photoionization of cytosine and its derivatives with UV-radiation at 248 nm-an EPR study in low-temperature perchlorate glasses. J Phys Chem 99:9299–9308

    Article  CAS  Google Scholar 

  • Mandal PC, Yamamoto O (1985) Changes of fluorescence spectra of cytosine in aqueous solution by radiation. Biochem Int 11:197–205

    CAS  Google Scholar 

  • Mandal PC, Yamamoto O (1986) Changes of fluorescence spectra of 2′-deoxyguanosine in aqueous solution by radiation. Biochem Int 12:255–265

    CAS  PubMed  Google Scholar 

  • Margolis SA, Coxon B, Gajewski E, Dizdaroglu M (1988) Structure of a hydroxyl radical induced crosslink of thymine and tyrosine. Biochemistry 27:6353–6359

    CAS  PubMed  Google Scholar 

  • Mariaggi N, Cadet J, Teoule R (1976) Cyclisation radicalaire de la desoxy-2′ adenosine en solution aqueuse, sous l’effet du rayonnement gamma. Tetrahedron 32:2385–2387

    Article  CAS  Google Scholar 

  • Mariaggi N, Teoule R, Cadet J, Dickie H, Hughes E (1979) A new radiolysis mechanism for 2′-deoxyadenosine in aqueous deaerated solution. Radiat Res 79:431–438

    CAS  Google Scholar 

  • Mark G, Schuchmann H-P, Schuchmann MN, Prager L, von Sonntag C (2003) Electron-beam treatment of aromatic hydrocarbons that can be air-stripped from contaminated groundwater, part 1. Model studies in aqueous solution. Environ Sci Technol 37:372–378

    Article  CAS  PubMed  Google Scholar 

  • Martin RF, Anderson RF (1998) Pulse radiolysis studies indicate that electron transfer is involved in radioprotection by Hoechst 33342 and methylproamine. Int J Radiat Oncol Biol Phys 42:827–831

    Article  CAS  PubMed  Google Scholar 

  • Martinez GR, Medeiros MHG, Ravanat J-L, Cadet J, Di Mascio P (2002) [O18]-Labeled singlet oxygen as a tool for mechanistic studies of 8-oxo-7,8-dihydroguanine oxidative damage: detection of spiroiminodihydantoin, imidazolone and oxazolone derivatives. Biol Chem 383:607–617

    Article  CAS  PubMed  Google Scholar 

  • Martini M, Termini J (1997) Peroxy radical oxidation of thymidine. Chem Res Toxicol 10:234–241

    Article  CAS  PubMed  Google Scholar 

  • Merényi G, Lind J, Shen X (1988) Electron transfer from indoles, phenol, and sulfite (SO32−) to chlorine dioxide (ClO2). J Phys Chem 92:134–137

    Google Scholar 

  • Mertens R (1994) Photochemie und Strahlenchemie von organischen Chlorverbindungen in wässriger Lösung. Dissertation, Ruhr Universität, Bochum

    Google Scholar 

  • Mertens R, von Sonntag C (1994a) Determination of the kinetics of vinyl radical reactions by the characteristic visible absorption of vinyl peroxyl radicals. Angew Chem Int Ed Engl 33:1262–1264

    Google Scholar 

  • Mertens R, von Sonntag C (1994b) The reaction of the OH radical with tetrachloroethene and trichloroacetaldehyde (hydrate) in oxygen-free solution. J Chem Soc Perkin Trans 2 2181–2185

    Google Scholar 

  • Miaskiewicz K, Osman R (1994) Theoretical study on the deoxyribose radicals formed by hydrogen abstraction. J Am Chem Soc 116:232–238

    Article  CAS  Google Scholar 

  • Michaels HB, Rasburn EJ, Hunt JW (1976) Interaction of the radiosensitizer para-nitroacetophenone with radiation-induced radicals on nucleic acid components. Radiat Res 65:250–267

    CAS  PubMed  Google Scholar 

  • Mieden OJ, Schuchmann MN, von Sonntag C (1993) Peptide peroxyl radicals: base-induced O2•− elimination versus bimolecular decay. A pulse radiolysis and product study. J Phys Chem 97:3783–3790

    Article  CAS  Google Scholar 

  • Misiaszek R, Crean C, Joffe A, Geacintov NE, Shafirovich V (2004) Oxidative DNA damage associated with combination of guanine and superoxide radicals and repair mechanisms via radical trapping. J Biol Chem 279:32106–32115

    Article  CAS  PubMed  Google Scholar 

  • Misiaszek R, Uvaydoc Y, Crean C, Geacintov NE, Shafirovich V (2005) Combination reactions of superoxide with 8-oxo-7,8-dihydroguanine radicals in DNA: kinetics and end-products. J Biol Chem 280:6293–6300

    Article  CAS  PubMed  Google Scholar 

  • Montevecchi PC, Manetto A, Navachhia ML, Chatgilialoglu C (2004) Thermal decomposition of the tert-butyl perester of thymidine-5′-carboxylic acid. Formation and fate of the pseudo-C4′ radical. Tetrahedron 60:4303–4308

    Article  CAS  Google Scholar 

  • Moorthy PN, Hayon E (1975) Free-radical intermediates produced from the one-electron reduction of purine, adenine and guanine derivatives in water. J Am Chem Soc 97:3345–3350

    CAS  PubMed  Google Scholar 

  • Mori M, Teshima S-I, Yoshimoto H, Fujita S-I, Taniguchi R, Hatta H, Nishimoto S-I (2001) OH Radical reaction of 5-substituted uracils: pulse radiolysis and product studies of a common redox-ambivalent radical produced by elimination of the 5-substituents. J Phys Chem B 105:2070–2078

    Article  CAS  Google Scholar 

  • Morin B, Cadet J (1995) Chemical aspects of the benzophenone-photosensitized formation of two lysine-2′-deoxyguanosine cross-links. J Am Chem Soc 117:12408–12415

    Article  CAS  Google Scholar 

  • Morita H, Kwiatkowski JS, Tempczyk A (1981) Electronic structures of uracil and its anions. Bull Chem Soc Jpn 54:1797–1801

    CAS  Google Scholar 

  • Moschel RC, Behrman EJ (1974) Oxidation of nucleic acid bases by potassium peroxodisulfate in alkaline aqueous solution. J Org Chem 39:1983–1989

    CAS  PubMed  Google Scholar 

  • Mossoba MM, Rosenthal I, Riesz P (1981) ESR and spin-trapping studies of dihydropyrimidines. γ-Radiolysis in the polycrystalline state and UV photolysis in aqueous solution. Int J Radiat Biol 40:541–552

    CAS  Google Scholar 

  • Muller E, Gasparutto D, Cadet J (2002) Chemical synthesis and biochemical properties of oligonucleotides that contain the (5′S,5S,6S)-5′6-cyclo-5-hydroxy-5,6-dihydro-2′-deoxyuridine DNA lesion. ChemBioChem 3:101–109

    Article  Google Scholar 

  • Mundy CJ, Colvin ME, Quong AA (2002) Irradiated guanine: a Car-Parinello molecular dynamics study of dehydrogenation in the presence of an OH radical. J Phys Chem A 106:10063–10071

    Article  CAS  Google Scholar 

  • Murata-Kamiya N, Kamiya H, Muraoka M, Kaji H, Kasai H (1998) Comparison of oxidation products from DNA components by γ-irradiation and Fenton-type reactions. J Radiat Res 38:121–131

    Google Scholar 

  • Nabben FJ, van der Stroom HA, Loman H (1983) Inactivation of biologically active DNA by isopropanol and formate radicals. Int J Radiat Biol 43:495–504

    CAS  Google Scholar 

  • Nakashima M, Hayon E (1979) Rates of reaction of inorganic phosphate radicals in solution. J Phys Chem 74:3290–3291

    Google Scholar 

  • Naumov S, Beckert D (2002) Reply to the ‘Comment on «A Fourier transform EPR study of uracil and thymine radical anions in aqueous solution»’ by DM Close. Phys Chem Chem Phys 4:45

    Article  CAS  Google Scholar 

  • Naumov S, Barthel A, Reinhold J, Dietz F, Geimer J, Beckert D (2000) Calculation of spin densities of radicals of pyrimidine-type bases by density functional theory. Influence of solvent and comparison with EPR results. Phys Chem Chem Phys 2:4207–4211

    Article  CAS  Google Scholar 

  • Naumov S, Hildenbrand K, von Sonntag C (2001) Tautomers of the N-centered radical generated by reaction of SO4•− with N(1)substituted cytosines in aqueous solution. Calculation of isotropic hyperfine coupling constants by a density functional method. J Chem Soc Perkin Trans 2 1648–1653

    Google Scholar 

  • Nelson WH, Hole EO, Sagstuen E, Close DM (1988) ESR/ENDOR study of guanine HCl 2H2O X-irradiated at 20K. Int J Radiat Biol 54:963–986

    CAS  PubMed  Google Scholar 

  • Nelson WH, Sagstuen E, Hole EO, Close DM (1998) Electron spin resonance and electron nuclear double resonance study of X-irradiated deoxyadenosine: proton transfer behaviour of primary ionic radicals. Radiat Res 149:75–86

    CAS  PubMed  Google Scholar 

  • Nese C, Yuan Z, Schuchmann MN, von Sonntag C (1992) Electron transfer from nucleobase electron adducts to 5-bromouracil. Is guanine an ultimate sink for the electron in irradiated DNA? Int J Radiat Biol 62:527–541

    CAS  PubMed  Google Scholar 

  • Nese C, Schuchmann MN, Steenken S, von Sonntag C (1995) Oxidation vs fragmentation in radiosensitization. Reactions of α-alkoxyalkyl radicals with 4-nitrobenzonitrile and oxygen. A pulse radiolysis and product study. J Chem Soc Perkin Trans 2 1037–1044

    Google Scholar 

  • Neta P (1972) Electron spin resonance study of radicals produced in irradiated aqueous solutions of 5-halouracils. J Phys Chem 76:2399–2402

    CAS  PubMed  Google Scholar 

  • Neta P, Huie RE, Ross AB (1988) Rate constants for reactions of inorganic radicals in aqueous solution. J Phys Chem Ref Data 17:1027–1284

    CAS  Google Scholar 

  • Niehaus H, Hildenbrand K (2000) Continuous-flow and spin-trapping EPR studies on the reactions of cytidine induced by the sulfate radical-anion in aqueous solution. Evidence for an intermediate radical cation. J Chem Soc Perkin Trans 2 947–952

    Google Scholar 

  • Niles JC, Burney S, Singh SP, Wishnok JS, Tannenbaum SR (1999) Peroxynitrie reaction products of 3′,5′-di-O-acetyl-8-oxo-7,8-dihydro-2′-deoxyguanosine. Proc Natl Acad Sci USA 96:11729–11734

    Article  CAS  PubMed  Google Scholar 

  • Niles JC, Wishnok JS, Tannenbaum SR (2000) A novel nitration product formed during the reaction of peroxynitrite with 2′,3′,5′.-tri-O-acetyl-7,8-dihydro-8-oxoguanosine: N-nitro-N-[1-(2′,3′,5′-tri-O-acetyl-β-D-erythro-pentofuranosyl)-2,4-dioxoimidazolodin-5-ylide ne]guanidine. Chem Res Toxicol 13:390–396

    Article  CAS  PubMed  Google Scholar 

  • Nishimoto S, Ide H, Wada T, Kagiya T (1983a) Radiation-induced hydroxylation of thymine promoted by electron-affinic compounds. Int J Radiat Biol 44:585–600

    CAS  Google Scholar 

  • Nishimoto S, Ide H, Nakamichi K, Kagiya T (1983b) Radiation-induced reduction of thymidine in aqueous solution: Isolation and characterization of a novel dimeric product. J Am Chem Soc 105:6740–6741

    CAS  Google Scholar 

  • Nishimoto S, Ide H, Nakamichi K, Otsuki N, Kagiya T (1983c) Radiation-induced reductive conversion of 5-bromo-6-hydroxythymine to thymine promoted by transition metal salts in deaerated aqueous solution. Chem Lett 1441–1444

    Google Scholar 

  • Nishimoto S, Ide H, Otsuki N, Nakamichi K, Kagiya T (1985) Radiation-induced reduction of thymine derivatives in aqueous solution. Part 4. Promoted transformation of thymine glycol into thymine by aromatic amines and low-valent transition metal salts. J Chem Soc Perkin Trans 2 1127–1134

    Google Scholar 

  • Nishimoto S, Hatta H, Ueshima H, Kagiya T (1992) 1-(5′-Fluoro-6′-hydroxy-5′,6′-dihydrouracil-5′-yl)-5-fluorouracil, a novel N(1)-C(5) linked dimer that releases 5-fluorouracil by radiation activation under hypoxic conditions. J Med Chem 35:2711–2712

    Article  CAS  PubMed  Google Scholar 

  • Norman ROC, Storey PM, West PR (1970) Electron spin resonance studies, part XXV. Reactions of the sulphate radical anion with organic compounds. J Chem Soc (B) 1087–1095

    Google Scholar 

  • Novais HM, Steenken S (1986) ESR studies of electron and hydrogen adducts of thymine and uracil and their derivatives and of 4,6-dihydroxypyrimidines in aqueous solution. Comparison with data from solid state. The protonation at carbon of the electron adducts. J Am Chem Soc 108:1–6

    Article  CAS  Google Scholar 

  • O’Neill P (1983) Pulse radiolytic study of the interaction of thiols and ascorbate with OH-adducts of dGMP and dG. Implications for DNA repair processes. Radiat Res 96:198–210

    CAS  PubMed  Google Scholar 

  • O’Neill P (1984) Hydroxyl radical damage: potential repair by sulphydryls, ascorbate and other antioxidants. Life Chem Rep Suppl Ser 2. In: Rotilio G, Bannister JV (eds) Oxidative damage and related enzymes. Life Chem Rep 1:337–341

    Google Scholar 

  • O’Neill P, Chapman PW (1985) Potential repair of free radical adducts of dGMP and dG by a series of reductants. A pulse radiolytic study. Int J Radiat Biol 47:71–80

    CAS  Google Scholar 

  • O’Neill P, Davies SE (1987) Pulse radiolytic study of the interaction of SO4•− with deoxynucleosides. Possible implications for direct energy deposition. Int J Radiat Biol 52:577–587

    CAS  Google Scholar 

  • O’Neill P, Chapman PW, Papworth DG (1985) Repair of hydroxyl radical damage of dA by antioxidants. Life Sci Rep 3:62–69

    CAS  Google Scholar 

  • Pan X-M, Bastian E, von Sonntag C (1988) The reactions of hydroxyl radicals with 1,4-and 1,3-cyclohexadiene in aqueous solution. A pulse radiolysis and product study. Z Naturforsch 43b:1201–1205

    Google Scholar 

  • Pan X-M, Schuchmann MN, von Sonntag C (1993a) Hydroxyl-radical-induced oxidation of 1,4-cyclohexadiene by O2 in aqueous solution. A pulse radiolysis and product study. J Chem Soc Perkin Trans 2 1021–1028

    Google Scholar 

  • Pan X-M, Schuchmann MN, von Sonntag C (1993b) Oxidation of benzene by the OH radical. A product and pulse radiolysis study in oxygenated aqueous solution. J Chem Soc Perkin Trans 2 289–297

    Google Scholar 

  • Parr KD, Wetmore SD (2004) The properties of DNA C4′-centered sugar radicals: the importance of the computational model. Chem Phys Lett 389:75–82

    Article  CAS  Google Scholar 

  • Patterson LK, Bansal KM (1972) Pulse radiolysis studies of 5-halouracils in aqueous solutions. J Phys Chem 76:2392–2399

    Article  CAS  PubMed  Google Scholar 

  • Patterson LK, Bansal KM, Bogan G, Infante GA, Fendler EJ, Fendler JH (1972) Micellar effects on Cl2•− reactivity. Reactions with surfactants and pyrimidines. J Am Chem Soc 94:9028–9032

    CAS  Google Scholar 

  • Paul CR, Belfi CA, Arakali AV, Box HC (1987a) Radiation damage to dinucleoside monophosphates: mediated versus direct damage. Int J Radiat Biol 51:103–114

    CAS  Google Scholar 

  • Paul CR, Arakali AV, Wallace JC, McReynolds J, Box HC (1987b) Radiation chemistry of 2′deoxycytidylyl-(3′5′)-2′deoxyguanosine and its sequence isomer in N2O-and O2-saturated solutions. Radiat Res 112:464–477

    CAS  PubMed  Google Scholar 

  • Pezeshk A, Podmore ID, Heelis PF, Symons MCR (1996) Electron addition to thymine dimers and related compounds: a mimic of natural repair. J Phys Chem 100:19714–19718

    CAS  Google Scholar 

  • Podmore ID, Malone ME, Symons MCR, Cullis PM, Dalgarno BG (1991) Factors controlling the site of protonation of the one-electron adduct of cytosine and its derivatives. J Chem Soc Faraday Trans 87:3647–3652

    Article  CAS  Google Scholar 

  • Popovic DM, Zmiric A, Zaric SD, Knapp E-W (2002) Energetics of radical transfer in DNA photolyase. J Am Chem Soc 124:3775–3782

    Article  CAS  PubMed  Google Scholar 

  • Poupko R, Rosenthal I, Elad D (1973) Photochemical decarboxylation of amino acids in the presence of metal ions. Photochem Photobiol 17:395–402

    CAS  Google Scholar 

  • Rakvin B, Herak JN, Voit K, Hüttermann J (1987) Free radicals from single crystals of deoxyguanosine 5′-monophosphate (Na salt) irradiated at low temperatures. Radiat Environ Biophys 26:1–12

    Article  CAS  PubMed  Google Scholar 

  • Raleigh JA, Blackburn BJ (1978) Substrate conformation in 5′-AMP-utilizing enzymes: 8,5′-cycloadenosine 5′-monophosphate. Biochem Biophys Res Commun 83:1061–1066

    Article  CAS  PubMed  Google Scholar 

  • Raleigh JA, Fuciarelli AF (1985) Distribution of damage in irradiated 5′-AMP: 8,5′-cyclo-AMP, 8-hydroxy-AMP, and adenine release. Radiat Res 102:165–175

    CAS  Google Scholar 

  • Raleigh JA, Whitehouse R, Kremers W (1974) Effect of oxygen and nitroaromatic cell radiosensitizers on radiation-induced phosphate release from 3′-and 5′-nucleotides: A model for nucleic acids. Radiat Res 59:453–465

    CAS  PubMed  Google Scholar 

  • Raleigh JA, Kremers W, Whitehouse R (1976) Radiation chemistry of nucleotides: 8,5′-Cyclonucleotide formation and phosphate release initiated by hydroxyl radical attack on adenosine monophosphates. Radiat Res 65:414–422

    CAS  PubMed  Google Scholar 

  • Raoul S, Cadet J (1996) Photosensitized reaction of 8-oxo-7,8-dihydro-2′-deoxyguanosine: Identification of 1-(2-deoxy-β-D-erythro-pentofuranosyl)cyanuric acid as the major singlet oxygen oxidation product. J Am Chem Soc 118:1892–1898

    Article  CAS  Google Scholar 

  • Raoul S, Bardet M, Cadet J (1995) γ Irradiation of 2′-deoxyadenosine in oxygen-free aqueous solutions: Identification and conformational features of formamidopyrimidine nucleoside derivatives. Chem Res Toxicol 8:924–933

    Article  CAS  PubMed  Google Scholar 

  • Raoul S, Berger M, Buchko GW, Joshi PC, Morin B, Weinfeld M, Cadet J (1996) 1H, 13C, and 15N nuclear magnetic resonance analysis and chemical features of the two main radical oxidation products of 2′-deoxyguanosine: oxazolone and imidazolone nucleosides. J Chem Soc Perkin Trans 2 371–381

    Google Scholar 

  • Rashid R, Mark F, Schuchmann H-P, von Sonntag C (1991) The SO4•−-induced oxidation of 1,3,6-trimethyluracil and 1,3,5-trimethyluracil (1,3-dimethylthymine) by potassium peroxodisulphate in aqueous solution: an interesting contrast. Int J Radiat Biol 59:1081–1100

    CAS  PubMed  Google Scholar 

  • Ravanat J-L, Berger M, Buchko GW, Bénard JF, van Lier JE, Cadet J (1991) Photooxidation sensibilisée de la déoxy-2′-guanosine par des phtalocyanines et naphtalocyanines. Détermination de l’importance des mécamismes de type I et de type II. J Chim Phys 88:1069–1076

    CAS  Google Scholar 

  • Ravanat J-L, Berger M, Benard F, Langlois R, Ouellet R, van Lier JE, Cadet J (1992) Phthalocyanine and naphthalocyanine photosensitized oxidation of type I and type II products. Photochem Photobiol 55:809–814

    CAS  Google Scholar 

  • Ravanat J-L, Cadet J, Araki K, Toma HE, Medeiros MHG, di Mascio P (1998) Supramolecular cationic tetraruthenated porphyrin and light-induced decomposition of 2′-deoxyguanosine predominantly via a singlet oxygen-mediated mechanism. Photochem Photobiol 68:698–702

    Article  CAS  PubMed  Google Scholar 

  • Ravanat J-L, Saint-Pierre C, Cadet J (2003) One-electron oxidation of the guanine moiety of 2′-deoxyguanosine: influence of 8-oxo-7,8-dihydro-2′-deoxyguanosine. J Am Chem Soc 125:2030–2031

    Article  CAS  PubMed  Google Scholar 

  • Razskazovskii Y, Sevilla MD (1996) Reactions of sulphonyl peroxyl radicals with DNA and its components: hydrogen abstraction from the sugar backbone versus addition to pyrimidine double bonds. Int J Radiat Biol 69:75–87

    Article  CAS  PubMed  Google Scholar 

  • Rehm D, Weller A (1970) Kinetics of fluorescence quenching by electron and H-atom transfer. Isr J Chem 8:259–271

    CAS  Google Scholar 

  • Reuther A, Iglev H, Laenen R, Lauberau A (2000) Femtosecond photo-ionization of nucleic acid bases: electronic lifetimes and electron yields. Chem Phys Lett 325:360–368

    Article  CAS  Google Scholar 

  • Reynisson J, Steenken S (2002) DFT calculations on the electrophilic reaction with water of the guanine and adenine radical cations. A model for the situation in DNA. Phys Chem Chem Phys 4:527–532

    CAS  Google Scholar 

  • Richardson NA, Gu J, Wang S, Xie Y, Schaefer HF III (2004) DNA nucleosides and their radical anions: molecular structures and electron affinities. J Am Chem Soc 126:4404–4411

    Article  CAS  PubMed  Google Scholar 

  • Riederer H, Hüttermann J (1982) Matrix isolation of free radicals from 5-halouracils. 3. Electron spin resonance of base oxidation in aqueous acidic glasses. J Phys Chem 86:3454–3463

    Article  CAS  Google Scholar 

  • Riederer H, Hüttermann J, Symons MCR (1978) σ*-Electron addition to 5-halogenouracils in neutral glasses. J Chem Soc Chem Commun 313–314

    Google Scholar 

  • Rivera E, Schuler RH (1983) Intermediates in the reduction of 5-halouracils by eaq. J Phys Chem 87:3966–3971

    Article  CAS  Google Scholar 

  • Rivière J, Bergeron F, Tremblay S, Gasparutto D, Cadet J, Wagner JR (2004) Oxidation of 5-hydroxy-2′-deoxyuridine into isodialuric acid, dialuric acid and hydantoin products. J Am Chem Soc 126:6548–6549

    PubMed  Google Scholar 

  • Romieu A, Gasparutto D, Cadet J (1999a) Synthesis and characterization of oligonucleotides containing 5′,8-cyclopurine 2′-deoxyribonucleosides: (5′R)-5′,8-cyclo-2′-deoxyadenosine, (5′S)-5′,8-cyclo-2′-deoxyguanosine and (5′R)-5′,8-cyclo-2′-deoxyguanosine. Chem Res Toxicol 12:412–421

    Article  CAS  PubMed  Google Scholar 

  • Romieu A, Gasparutto D, Cadet J (1999b) Synthesis and characterization of oligonucleotides containing the two 5R and 5S diastereoisomer of (5′S,6S)-5′,6-cyclo-5,6-dihydrothymidine; radiation-induced tandem lesions of thymidine. J Chem Soc Perkin Trans 1 1257–1263

    Google Scholar 

  • Romieu A, Gasparutto D, Molko D, Cadet J (1999c) Site-specific introduction of (5′S)-5′,8-cyclo-2′-deoxyadenosine into oligodeoxyribonucleotides. J Org Chem 63:5245–5249

    Google Scholar 

  • Romieu A, Gasparutto D, Molko D, Ravanat J-L, Cadet J (1999d) Synthesis of oligonucleotides containing the (4R) and (4S) diastereoisomers of 4,8-dihydro-4-hydroxy-8-oxo-2′-deoxyguanosine. Eur J Org Chem 49–56

    Google Scholar 

  • Russo N, Toscano M, Grand A (2000) Theoretical determination of electron affinity and ionization potential of DNA and RNA bases. J Comput Chem 21:1243–1250

    Article  CAS  Google Scholar 

  • Sagstuen E, Hole EO, Nelson WH, Close DM (1998) Radiation damage to DNA base pairs. II. Paramagnetic resonance studies of 1-methyluracil. 9-ethyladenine complex crystals X-irradiated at 10 K. Radiat Res 149:120–127

    CAS  PubMed  Google Scholar 

  • Sako M, Shimada K, Hirota K, Maki Y (1986) Photochemical intramolecular cyclisation of purine and pyrimidine nucleosides induced by an electron acceptor. J Chem Soc Chem Commun 1704–1706

    Google Scholar 

  • Salomon J, Elad D (1973) Photochemical reactions of nucleic acid constituents. Peroxide-initiated reactions of purines with alcohols. J Org Chem 38:3420–3421

    CAS  PubMed  Google Scholar 

  • Salomon J, Elad D (1974) Ultraviolet and γ-ray-induced reactions of nucleic acid constituents. Reactions of purines with amines. Photochem Photobiol 19:21–27

    CAS  Google Scholar 

  • Samuni A, Neta P (1973) Hydroxyl radical reaction with phosphate esters and the mechanism of phosphate cleavage. J Phys Chem 77:2425–2429

    CAS  Google Scholar 

  • Scholes ML, Schuchmann MN, von Sonntag C (1992) Enhancement of radiation-induced base release from nucleosides in alkaline solution: essential role of the Oradical. Int J Radiat Biol 61:443–449

    CAS  PubMed  Google Scholar 

  • Schuchmann H-P, von Sonntag C (1988) The oxidation of methanol and 2-propanol by potassium peroxodisulphate in aqueous solution: free-radical chain mechanisms elucidated by radiationchemical techniques. Radiat Phys Chem 32:149–156

    CAS  Google Scholar 

  • Schuchmann H-P, Wagner R, von Sonntag C (1983) γ-Radiolysis of 2′-deoxycytidine-5′-phosphate in deoxygenated aqueous solutions. OH radical-induced alternations at the sugar moiety. Z Naturforsch 38b:1213–1220

    CAS  Google Scholar 

  • Schuchmann H-P, Wagner R, von Sonntag C (1986) The reactions of the hydroxymethyl radical with 1,3-dimethyluracil and 1,3-dimethylthymine. Int J Radiat Biol 50:1051–1068

    CAS  Google Scholar 

  • Schuchmann H-P, Deeble DJ, Olbrich G, von Sonntag C (1987) The SO4•−-induced chain reaction of 1,3-dimethyluracil with peroxodisulphate. Int J Radiat Biol 51:441–453

    CAS  Google Scholar 

  • Schuchmann MN, von Sonntag C (1983) The radiolysis of uracil in oxygenated aqueous solutions. A study by product analysis and pulse radiolysis. J Chem Soc Perkin Trans 2 1525–1531

    Google Scholar 

  • Schuchmann MN, von Sonntag C (1984) Radiolysis of di-and trimethylphosphates in oxygenated aqueous solution: a model system for DNA strand breakage. J Chem Soc Perkin Trans 2 699–704

    Google Scholar 

  • Schuchmann MN, Al-Sheikhly M, von Sonntag C, Garner A, Scholes G (1984a) The kinetics of the rearrangement of some isopyrimidines to pyrimidines studied by pulse radiolysis. J Chem Soc Perkin Trans 2 1777–1780

    Google Scholar 

  • Schuchmann MN, Steenken S, Wroblewski J, von Sonntag C (1984b) Site of OH radical attack on dihydrouracil and some of its methyl derivatives. Int J Radiat Biol 46:225–232

    CAS  Google Scholar 

  • Schuchmann MN, Zegota H, von Sonntag C (1984c) Reactions of peroxyl radicals derived from alkyl phosphates in aqueous solution-model system for DNA strand breakage. In: Bors W, Saran M, Tait D (eds) Oxygen radicals in chemistry and biology. de Gruyter, Berlin, pp 629–635

    Google Scholar 

  • Schuchmann MN, Scholes ML, Zegota H, von Sonntag C (1995) Reaction of hydroxyl radicals with alkyl phosphates and the oxidation of phosphatoalkyl radicals by nitro compounds. Int J Radiat Biol 68:121–131

    CAS  PubMed  Google Scholar 

  • Schuchmann MN, Bothe E, von Sonntag J, von Sonntag C (1998) Reaction of OH radicals with benzoquinone in aqueous solutions. A pulse radiolysis study. J Chem Soc Perkin Trans 2 791–796

    Google Scholar 

  • Schuchmann MN, Schuchmann H-P, Knolle W, von Sonntag J, Naumov S, Wang W-F, von Sonntag C (2000) Free-radical chemistry of thiourea in aqueous solution, induced by OH radical, H atom, α-hydroxyalkyl radicals, photoexcited maleimide, and the solvated electron. Nukleonika 45:55–62

    CAS  Google Scholar 

  • Schuchmann MN, Naumov S, Schuchmann H-P, von Sonntag J, von Sonntag C (2005) 4-Amino-3Hpyrimidin-2-one (“isocytosine”) is a short-lived non-radical intermediate formed in the pulse radiolysis of cytosine in aqueous solution. Radiat Phys Chem 72:243–250

    CAS  Google Scholar 

  • Schulte-Frohlinde D, Hildenbrand K (1989) Electron spin resonance studies of the reactions of OH and SO4•− radicals with DNA, polynucleotides and single base model compounds. In: Minisci F (ed) Free radicals in synthesis and biology. Kluwer, Dordrecht, pp 335–359

    Google Scholar 

  • Schulte-Frohlinde D, Behrens G, Önal A (1986) Lifetime of peroxyl radicals of poly(U), poly(A) and single-and double-stranded DNA and the rate of their reaction with thiols. Int J Radiat Biol 50:103–110

    CAS  Google Scholar 

  • Seidel CAM, Schulz A, Sauer MHM (1996) Nucleobase-specific quenching of fluorescent dyes. 1. Nucleobase one-electron redox potentials and their correlation with static and dynamic quenching efficiencies. J Phys Chem 100:5541–5553

    CAS  Google Scholar 

  • Sevilla MD (1976) Electron spin resonance study of N1-substituted thymine π-cation radicals. J Phys Chem 80:1898–1901

    CAS  Google Scholar 

  • Sevilla MD, Becker D (1994) Radiation damage in DNA. Electron Spin Reson 14:130–165

    CAS  Google Scholar 

  • Sevilla MD, Failor R, Zorman G (1974) Radicals formed after electron attachment to 5-halouracils in aqueous glasses. J Phys Chem 78:696–699

    Article  CAS  Google Scholar 

  • Sevilla MD, Besler B, Colson A-O (1995) Ab initio molecular orbital calculations of DNA radical ions. 5. Scaling of calculated electron affinities and ionization potentials to experimental values. J Phys Chem 99:1060–1063

    Article  CAS  Google Scholar 

  • Shafirovich V, Dourandin A, Luneva NP, Geacintov NE (2000) The kinetic deuterium isotope effect as a probe of a proton coupled electron transfer mechanism in the oxidation of guanine by 2-aminopurine radicals. J Phys Chem B 104:137–139

    Article  CAS  Google Scholar 

  • Shafirovich V, Cadet J, Gasparutto D, Dourandin A, Geacintov NE (2001) Nitrogen dioxide as an oxidizing agent of 8-oxo-7,8-dihydro-2′-deoxyguanosine but not 2′-deoxyguanosine. Chem Res Toxicol 14:233–241

    Article  CAS  PubMed  Google Scholar 

  • Shaw AA, Cadet J (1988) Formation of cyclopyrimidines via the direct effects of gamma radiation of pyrimidine nucleosides. Int J Radiat Biol 54:987–997

    CAS  PubMed  Google Scholar 

  • Shaw AA, Cadet J (1996) Direct effects of γ-radiation on 2′-deoxycytidine in frozen aqueous solution. Int J Radiat Biol 70:1–6

    Article  CAS  PubMed  Google Scholar 

  • Shaw AA, Voituriez L, Cadet J, Gregoli S, Symons MCR (1988) Identification of the products from the direct effect of γ-radiation of thymidine. J Chem Soc Perkin Trans 2 1303–1307

    Google Scholar 

  • Shetlar MD (1976) The photoreactions and free radical induced reactions of 1,3-dimethyluracil in methanol and other alcohols. Photochem Photobiol 24:315–319

    CAS  Google Scholar 

  • Shetlar MD (1979) Photochemical and free radical initiated reactions of 1,3-dimethylthymine with isopropanol. Photochem Photobiol 29:253–259

    CAS  PubMed  Google Scholar 

  • Shetlar MD (1980) Photochemical and free radical initiated reactions of 1,3-dimethylthymine with ethanol. Photochem Photobiol 32:587–592

    CAS  Google Scholar 

  • Shetlar MD, Hom K (1987) Mixed products of thymine and cysteine produced by direct and acetonesensitized photoreactions. Photochem Photobiol 45:703–712

    CAS  PubMed  Google Scholar 

  • Sheu C, Foote CS (1995a) Reactivity toward singlet oxygen of a 7,8-dihydro-8-oxoguanosine (‘8-hydroxyguanosine’) formed by photooxidation of a guanosine derivative. J Am Chem Soc 117:6439–6442

    CAS  Google Scholar 

  • Sheu C, Foote CS (1995b) Photosensitized oxygenation of a 7,8-dihydroxy-8-oxoguanosine derivative. Formation of dioxetane and hydroperoxide intermediates. J Am Chem Soc 117:474–477

    CAS  Google Scholar 

  • Shi Y, Lin W, Fan B, Jia Z, Yao S, Kang J, Wang W, Zheng R (1999a) Fast repair of hydroxy radical purine deoxynucleotide adducts by phenylpropanoid glycosides and their derivatives from Chinese herbs. Biochim Biophys Acta 1472:115–127

    CAS  PubMed  Google Scholar 

  • Shi Y, Kang J, Lin W, Fan B, Jia Z, Yao S, Wang W, Zheng R (1999b) Fast repair of deoxynucleotide radical cations by phenylpropanoid glycosides (PPGs) and their analogs. Biochim Biophys Acta 1472:279–289

    CAS  PubMed  Google Scholar 

  • Shi Y, Huang C, Wang W, Kang J, Yao S, Lin N, Zheng R (2000a) Electron transfer from purine deoxynucleotides to deoxynucleotides deprotonated radical cations in aqueous solution. Radiat Phys Chem 58:253–260

    CAS  Google Scholar 

  • Shi Y, Lin W, Fan P, Jia Z, Yao S, Kang J, Wang W, Zheng R (2000b) Fast repair of TMP radical anions by phenylpropanoid glycosides (PPGs) and their analogs. Radiat Phys Chem 58:131–138

    CAS  Google Scholar 

  • Shragge PC, Hunt JW (1974) A pulse radiolysis study of the free radical intermediates in the radiolysis of uracil. Radiat Res 60:233–249

    CAS  Google Scholar 

  • Shragge PC, Varghese AJ, Hunt JW, Greenstock CL (1974) Radiolysis of uracil in the absence of oxygen. Radiat Res 60:250–267

    CAS  Google Scholar 

  • Simandan T, Sun J, Dix TA (1998) Oxidation of DNA bases, deoxyribonucleosides and homopolymers by peroxyl radicals. Biochem J 335:233–240

    CAS  PubMed  Google Scholar 

  • Simic M, Dizdaroglu M (1985) Formation of radiation-induced cross-links between thymine and tyrosine: Possible model for cross-linking of DNA and proteins by ionizing radiation. Biochemistry 24:234–236

    Article  Google Scholar 

  • Simic M, Hayon E (1972) A model of radiation sensitization by quinones. Int J Radiat Biol 22:507–511

    CAS  Google Scholar 

  • Simic M, Hayon E (1973) Comparison between the electron transfer reactions from free radicals and their corresponding peroxy radicals to quinones. Biochem Biophys Res Commun 50:364–369

    Article  CAS  PubMed  Google Scholar 

  • Sommerfeld T (2001) Electron-induced chemistry of 5-chlorouracil. Chem Phys Chem 677–679

    Google Scholar 

  • Spalletta RA, Bernhard WA (1982) Spin-trapping free radicals by solvating X-irradiated crystalline pyrimidines. Radiat Res 89:11–24

    CAS  Google Scholar 

  • Steenken S (1988) Electron transfer between radicals and organic molecules via addition/elimination. An inner-sphere path. In: Rice-Evans C, Dormandy T (eds) Free radicals: chemistry, pathology and medicine. Richelieu Press, London, pp 53–71

    Google Scholar 

  • Steenken S (1989) Purine bases, nucleosides and nucleotides: Aqueous solution redox chemistry and transformation reactions of their radical cations e and OH adducts. Chem Rev 89:503–520

    Article  CAS  Google Scholar 

  • Steenken S (1992) Electron-transfer-induced acidity/basicity and reactivity changes of purine and pyrimidine bases. Consequences of redox processes for DNA base pairs. Free Radical Res Commun 16:349–379

    CAS  Google Scholar 

  • Steenken S, Jagannadham V (1985) Reaction of 6-yl radicals of uracil, thymine, and cytosine and their nucleosides with nitrobenzenes via addition to give nitroxide radicals. OH catalyzed nitroxide heterolysis. J Am Chem Soc 107:6818–6826

    Article  CAS  Google Scholar 

  • Steenken S, Jovanovic SV (1997) How easily oxidizable is DNA? One-electron reduction potentials of adenosine and guanosine radicals in aqueous solution. J Am Chem Soc 119:617–618

    Article  CAS  Google Scholar 

  • Steenken S, Behrens G, Schulte-Frohlinde D (1974) Radiation chemistry of DNA model compounds, part IV. Phosphate ester cleavage in radicals derived from glycerol phosphates. Int J Radiat Biol 25:205–210

    CAS  Google Scholar 

  • Steenken S, Telo JP, Novais HM, Candeias LP (1992) One-electron-reduction potentials of pyrimidine bases, nucleosides, and nucleotides in aqueous solution. Consequences for DNA redox chemistry. J Am Chem Soc 114:4701–4709

    Article  CAS  Google Scholar 

  • Steenken S, Jovanovic SV, Bietti M, Bernhard K (2000) The trap depth (in DNA) of 8-oxo-7,8-dihydro-2′-deoxyguanosine as derived from electron-transfer equilibria in aqueous solution. J Am Chem Soc 122:2373–2384

    Article  CAS  Google Scholar 

  • Steenken S, Jovanovic SV, Candeias LP, Reynisson J (2001) Is „frank“ DNA-stand breakage via the guanine radical thermodynamically and sterically possible? Chem Eur J 7:2829–2833

    Article  CAS  Google Scholar 

  • Steinmaus H, Rosenthal I, Elad D (1969) Photochemical and γ-ray-induced reactions of purines and purine nucleosides with 2-propanol. J Am Chem Soc 91:4921–4923

    Article  CAS  Google Scholar 

  • Steinmaus H, Rosenthal I, Elad D (1971) Light-and γ-ray-induced reactions of purines and purine nucleosides with alcohols. J Org Chem 36:3594–3598

    CAS  PubMed  Google Scholar 

  • Stelter L, von Sonntag C, Schulte-Frohlinde D (1974) Radiation chemistry of DNA-model compounds, V. Phosphate elimination from ribose-5-phosphate after OH radical attack at C-4. Int J Radiat Biol 25:515–519

    CAS  Google Scholar 

  • Stelter L, von Sonntag C, Schulte-Frohlinde D (1975a) Radiation chemistry of DNA-model compounds VIII. Dephosphorylation products from reactions of OH radicals with ribose-5-phosphate in aqueous solution. The effect of oxygen. Z Naturforsch 30b:609–615

    CAS  Google Scholar 

  • Stelter L, von Sonntag C, Schulte-Frohlinde D (1975b) Radiation chemistry of DNA-model compounds, VII. On the formation of 5-deoxy-D-erythro-pentos-4-ulose and the identification of 12 further products from γ-irradiated aqueous solutions of ribose-5-phosphate. Z Naturforsch 30b:656–657

    CAS  Google Scholar 

  • Stelter L, von Sonntag C, Schulte-Frohlinde D (1976) Phosphate ester cleavage in ribose-5-phosphate induced by OH radicals in deoxygenated aqueous solution. The effect of Fe(II) and Fe(III) ions. Int J Radiat Biol 29:255–269

    CAS  Google Scholar 

  • Sudha Sawargara M, Adinarayana M (2003) Kinetics and mechanism of protection of thymine from sulphate radical anion under anoxic conditions. Proc Indian Acad Sci (Chem Sci ) 115:123–128

    Google Scholar 

  • Sugiyama H, Tsutsumi Y, Fujimoto K, Saito I (1993) Photoinduced deoxyribose C2′ oxidation in DNA. Alkali-dependent cleavage of erythrose-containing sites via a retroaldol reaction. J Am Chem Soc 115:4443–4448

    CAS  Google Scholar 

  • Sugiyama H, Fujimoto K, Saito I (1995) Stereospecific 1,2-hydride shift in ribonolactone formation in the photoreaction of 2′-iododeooxyuridine. J Am Chem Soc 117:2945–2946

    Article  CAS  Google Scholar 

  • Sugiyama H, Fujimoto K, Saito I (1997) Preferential C1′ hydrogen abstraction by a uracilyl radical in a DNA-RNA hybrid. Tetrahedron Lett 38:8057–8060

    Article  CAS  Google Scholar 

  • Svoboda P, Harms-Ringdahl M (1999) Protection or sensitation by thiols or ascorbate in irradiated solutions of DNA or deoxyguanosine. Radiat Res 151:605–616

    CAS  PubMed  Google Scholar 

  • Symons MCR (1990) ESR spectra for protonated thymine and cytidine radical anions: their relevance to irradiated DNA. Int J Radiat Biol 58:93–96

    CAS  PubMed  Google Scholar 

  • Syrstad EA, Vivekananda S, Turecek F (2001) Direct observation of a hydrogen atom adduct to C-5 in uracil. A neutralzation-reionization mass spectrometric and ab initio study. J Phys Chem A 105:8339–8351

    CAS  Google Scholar 

  • Tallman KA, Greenberg MM (2001) Oxygen-dependent DNA damage amplification involving 5,6-dihydrothymin-5-yl in a structurally minimal system. J Am Chem Soc 123:5181–5187

    CAS  PubMed  Google Scholar 

  • Tallman KA, Tronche C, Yoo DJ, Greenberg MM (1998) Release of superoxide from nucleoside peroxyl radicals, a double-edged sword? J Am Chem Soc 120:4903–4909

    Article  CAS  Google Scholar 

  • Teoule R, Cadet J (1974) Influence of the pH in the OH radical attack on the pyrimidinic ring. Z Naturforsch 29c:645–646

    Google Scholar 

  • Theruvathu JA, Aravindakumar CT, Flyunt R, von Sonntag C (2001) Fenton chemistry of 1,3-dimethyluracil. J Am Chem Soc 123:9007–9014

    Article  CAS  PubMed  Google Scholar 

  • Tremblay S, Douki T, Cadet J, Wagner JR (1999) 2′-Deoxycytidine glycols: a missing link in the freeradical-mediated oxidation of DNA. J Biol Chem 274:20833–20838

    Article  CAS  PubMed  Google Scholar 

  • Tretyakova NYu, Niles JC, Burney S, Wishnok JS, Tannenbaum SR (1999) Peroxynitrite-induced reactions of synthetic oligonucleotides containing 8-oxoguanine. Chem Res Toxicol 12:459–466

    Article  CAS  PubMed  Google Scholar 

  • Ulanski P, von Sonntag C (1999) The OH-radical-induced chain reactions of methanol with hydrogen peroxide and with peroxodisulfate. J Chem Soc Perkin Trans 2 165–168

    Google Scholar 

  • Uppu RM, Cueto R, Squadrito GL, Salgo MS, Pryor WA (1996) Competitive reactions of peroxynitrite with 2′-deoxyguanosine and 7,8-dihydro-8-oxo-2′-deoxyguanosine (8-oxodG): Relevance to the formation of 8-oxodG in DNA exposed to peroxynitrite. Free Rad Biol Med 21:407–411

    Article  CAS  PubMed  Google Scholar 

  • Valentine MR, Rodriguez H, Termini J (1998) Mutagenesis by peroxy radical is dominated by transversions at deoxyguanosine: Evidence for the lack of involvement of 8-oxo-dG and/or abasic site formation. Biochemistry 37:7030–7038

    Article  CAS  PubMed  Google Scholar 

  • van der Vliet A, O’Neill CA, Halliwell B, Cross CE, Kaur H (1994) Aromatic hydroxylation and nitration of phenylalanine and tyrosine by peroxynitrite. Evidence for hydroxyl radical production from peroxynitrite. FEBS Lett 339:89–92

    PubMed  Google Scholar 

  • van Hemmen JJ (1971) 6-Amino-8-hydroxy-7,8-dihydropurine: radiation product of adenine. Nature New Biol 231:79–80

    PubMed  Google Scholar 

  • van Hemmen JJ, Bleichrodt JF (1971) The decomposition of adenine by ionizing radiation. Radiat Res 46:444–456

    PubMed  Google Scholar 

  • Varghese AJ (1973) Properties of photoaddition products of thymine and cysteine. Biochemistry 12:2725–2730

    Article  CAS  PubMed  Google Scholar 

  • Varghese AJ (1974) Photochemical addition of glutathione to uracil and thymine. Photochem Photobiol 20:339–343

    CAS  PubMed  Google Scholar 

  • Velikyan I, Acharya S, Trifonova A, Földesi A, Chattopadhyaya J (2001) The pKas of 2′-hydroxyl group in nucleosides and nucleotides. J Am Chem Soc 123:2893–289

    Article  CAS  PubMed  Google Scholar 

  • Veltwisch D, Asmus K-D (1982) On the reaction of methyl and phenyl radicals with p-benzoquinone in aqueous solution. J Chem Soc Perkin Trans 2 1147–1152

    Google Scholar 

  • Vialas C, Pratviel G, Claparols C, Meunier B (1998) Efficient oxidation of 2′-deoxyguanosine by Mn-TMPyP/KHSO5 to imidazolone dIz without formation of 8-oxo-dG. J Am Chem Soc 1120:11548–11553

    Article  CAS  Google Scholar 

  • Vialas C, Pratviel G, Meyer A, Rayner B, Meunier B (1999) Obtention of two anomers of imidazolone during the type I photosensitized oxidation of 2′-deoxyguanosine. J Chem Soc Perkin Trans 1 1201–1205

    Google Scholar 

  • Vieira AJSC, Steenken S (1987a) Pattern of OH radical reaction with 6-and 9-substituted purines. Effect of substituents on the rates and activation parameters of unimolecular transformation reactions of two isomeric OH adducts. J Phys Chem 91:4138–4144

    Article  CAS  Google Scholar 

  • Vieira AJSC, Steenken S (1987b) Pattern of OH radical reaction with N6,N6-dimethyladenosine. Production of three isomeric OH adducts and their dehydration and ring opening reactions. J Am Chem Soc 109:7441–7448

    Article  CAS  Google Scholar 

  • Vieira AJSC, Steenken S (1990) Pattern of OH radical reaction with adenine and its nucleosides and nucleotides. Characterization of two types of isomeric OH adduct and their unimolecular transformation reactions. J Am Chem Soc 112:6986–6994

    Article  CAS  Google Scholar 

  • Vieira AJSC, Steenken S (1991) Pattern of OH radical reaction with N6,N6,9-trimethyladenine. Dehydroxylation and ring-opening of isomeric OH-adducts. J Phys Chem 95:9340–9346

    Article  CAS  Google Scholar 

  • Vieira AJSC, Candeias LP, Steenken S (1993) Hydroxyl radical induced damage to the purine bases of DNA: in vitro studies. J Chim Phys 90:881–897

    CAS  Google Scholar 

  • Visscher KJ, de Haas MP, Loman H, Vojnovic B, Warman JM (1987) Fast protonation of adenosine and of its radical anion formed by hydrated electron attack; a nanosecond optical and dc-conductivity pulse radiolysis study. Int J Radiat Biol 52:745–753

    CAS  Google Scholar 

  • Visscher KJ, Spoelder HJW, Loman H, Hummel A, Hom ML (1988) Kinetics and mechanism of electron transfer between purines and pyrimidines, their dinucleotides and polynucleotides after reaction with hydrated electrons; a pulse radiolysis study. Int J Radiat Biol 54:787–802

    CAS  PubMed  Google Scholar 

  • von Sonntag C (1980) Free radical reactions of carbohydrates as studied by radiation techniques. Adv Carbohydr Chem Biochem 37:7–77

    Google Scholar 

  • von Sonntag C (1987a) The chemical basis of radiation biology. Taylor and Francis, London

    Google Scholar 

  • von Sonntag C (1987) Pulse radiolysis of nucleic acids and their base constituents: an updating review. Radiat Phys Chem 30:313–330

    Google Scholar 

  • von Sonntag C (1991) The chemistry of free-radical-mediated DNA damage. In: Glass WA, Varma MN (eds) Physical and chemical mechanisms in molecular radiation. Plenum, New York, pp 287–321

    Google Scholar 

  • von Sonntag C (1994) Topics in free-radical-mediated DNA damage: purines and damage mplification-superoxide reactions-bleomycin, the incomplete radiomimetic. Int J Radiat Biol 66:485–490

    Google Scholar 

  • von Sonntag C, Schuchmann H-P (2001) Radiation chemistry of the nucleobases. In: Jonah CD, Rao BSM (eds) Radiation chemistry: present status and future trends. Elsevier, Amsterdam, pp 513–551

    Google Scholar 

  • von Sonntag C, Ansorge G, Sugimori A, Omori T, Koltzenburg G, Schulte-Frohlinde D (1972) Radiation chemistry of DNA model compounds, part II. Alkyl phosphate cleavage of aliphatic phosphates induced by hydrated electrons and by OH radicals. Z Naturforsch 27b:471–472

    Google Scholar 

  • von Sonntag C, Dizdaroglu M, Schulte-Frohlinde D (1976) Radiation chemistry of carbohydrates. VIII. γ-Radiolysis of cellobiose in N2O-saturated aqueous solution, part II. Quantitative measurements. Mechanisms of the radical-induced scission of the glycosidic linkage. Z Naturforsch 31b:857–864

    Google Scholar 

  • von Sonntag J, Mvula E, Hildenbrand K, von Sonntag C (2004) Photohydroxylation of 1,4-benzoquinone in aqueous solution revisited. Chem Eur J 10:440–451

    Google Scholar 

  • Wada T, Ide H, Nishimoto S, Kagiya T (1982) Radiation-induced reduction of thymine in aqueous solution. Int J Radiat Biol 42:215–221

    CAS  Google Scholar 

  • Wagner BO, Klever H, Schulte-Frohlinde D (1974) Conductometric pulse radiolysis study on the reaction of the solvated electron with 5-bromouracil in aqueous solutions at different pH values. Z Naturforsch 29b:86–88

    Google Scholar 

  • Wagner BO, Schulte-Frohlinde D (1975) Decay and protonation of the 5-chlorouracil radical anion in aqueous solutions. Ber Bunsenges Phys Chem 79:589–597

    CAS  Google Scholar 

  • Wagner JR, van Lier JE, Decarroz C, Cadet J (1987) Photo and radiation-induced formation of thymidine hydroperoxides. Bioelectrochem Bioenerget 18:155–162

    CAS  Google Scholar 

  • Wagner JR, Berger M, Cadet J, van Lier JE (1990a) Analysis of thymidine hydroperoxides by post-column reaction high-performance liquid chromatography. J Chromatogr 504:191–196

    Article  CAS  Google Scholar 

  • Wagner JR, van Lier JE, Johnston LJ (1990b) Quinone sensitized electron transfer photooxidation of nucleic acids: chemistry of thymine and thymidine radical cations in aqueous solution. Photochem Photobiol 52:333–343

    CAS  PubMed  Google Scholar 

  • Wagner JR, Decarroz C, Berger M, Cadet J (1999) Hydroxyl-radical-induced decomposition of 2′-deoxycytidine in aerated solutions. J Am Chem Soc 1121:4101–4110

    CAS  Google Scholar 

  • Wagner JR, Hu C-C, Ames BN (2004) Endogeneous oxidative damage of deoxycytidine in DNA. Proc Natl Acad Sci USA 89:3380–3384

    Google Scholar 

  • Wagner R, Schuchmann H-P, von Sonntag C (1999) unpublished results

    Google Scholar 

  • Wang W-F, Schuchmann MN, Bachler V, Schuchmann H-P, von Sonntag C (1996) The termination of CH2OH/CH2O•− radicals in aqueous solutions. J Phys Chem 100:15843–15847

    CAS  Google Scholar 

  • Wang W, Razskazovskii Y, Sevilla MD (1997) Secondary radical attack on DNA nucleotides: reaction by addition to DNA bases and abstraction from sugars. Int J Radiat Biol 71:387–399

    CAS  PubMed  Google Scholar 

  • Wang Y, Liu Z (2002) Mechanism for the formation of major oxidation products of adenine upon 365 nm irradiation with 2-methyl-1,4-naphthoquinone as sensitizer. J Org Chem 67:8507–8512

    CAS  PubMed  Google Scholar 

  • Wardman P (1987) The mechanism of radiosensitization by electron-affinic compounds. Radiat Phys Chem 30:423–432

    CAS  Google Scholar 

  • Wardman P (1989) Reduction potentials of one-electron couples involving free radicals in aqueous solution. J Phys Chem Ref Data 18:1637–1755

    CAS  Google Scholar 

  • Wetmore SD, Boyd RJ, Eriksson LA (1998a) Comparison of experimental and calculated hyperfine coupling constants. Which radicals are formed in irradiated guanine? J Phys Chem B 102:9332–9343

    CAS  Google Scholar 

  • Wetmore SD, Boyd RJ, Erikson LA (1998b) Radiation products of thymine, 1-methylthymine and uracil investigated by Density Functional Theory. J Phys Chem B 102:5369–5377

    CAS  Google Scholar 

  • White B, Smyth MR, Stuart JD, Rusling JF (2003) Oscillating formation of 8-oxoguanine during DNA oxidation. J Am Chem Soc 125:6604–6605

    CAS  PubMed  Google Scholar 

  • Willson RL (1970) The reaction of oxygen with radiation-induced free radicals in DNA and related compounds. Int J Radiat Biol 17:349–358

    CAS  Google Scholar 

  • Willson RL, Wardman P, Asmus K-D (1974) Interaction of dGMP radical with cysteamine and promethazine as possible model of DNA repair. Nature 252:323–324

    Article  CAS  PubMed  Google Scholar 

  • Wojcik A, Naumov S, Marciniak B, Herman R, Brede O (2005) Thiyl radical interaction with pyrimidine C5–C6 double bond. J Phys Chem B (in press)

    Google Scholar 

  • Wojcik A, von Sonntag C, Obe G (2003) Application of the biotin-dUTP chromosome-labelling technique to study the role of 5-bromo-2′-deoxyuridine in the formation of UV-induced sister chromatid exchanges in CHO cells. J Photochem Photobiol B Biol 69:139–144

    CAS  Google Scholar 

  • Wolken JK, Turecek F (2001) Direct observation of a hydrogen atom adduct to O-4 in uracil. Energetics and kinetics of uracil radicals. J Phys Chem A 105:8352–8360

    Article  CAS  Google Scholar 

  • Wu Y, Mundy CJ, Colvin ME, Car R (2004) On the mechanism of OH radical induced DNA-base damage: a comparative quantum chemical and Car-Parinello molecular dynamics study. J Phys Chem A 108:2922–2929

    CAS  Google Scholar 

  • Wyard SJ, Elliott JP (1973) ESR studies of radiation damage in nucleic acids, bases, nucleosides and nucleotides. Ann NY Acad Sci 222:628–639

    CAS  PubMed  Google Scholar 

  • Yamamoto O (1973) Radiation-induced binding of nucleic acid constituents with protein constituents and with each other. Int J Radiat Phys Chem 5:213–229

    Article  CAS  Google Scholar 

  • Yamamoto O, Mandal PC (1988) Radiation-induced fluorescence changes of 2′-deoxycytidine and cytidilyl-cytidine in aqueous solution. Comparison with radiolytic behaviors of other nucleobase derivatives. J Radiat Res 131–143

    Google Scholar 

  • Yamamoto O, Ayaki H, Mandal PC (1985) Changes of fluorescence spectra of adenine in aqueous solution. Biochem Int 11:207–215

    CAS  Google Scholar 

  • Yamamoto O, Ali MM, Okazaki M, Terato H, Ohyama Y, Ohta S (1995) Very highly fluorescent product from 2′-deoxyguanosine with t-butanol in aqueous solution by exposure to cobalt-60 gammarays. Radiat Phys Chem 45:207–216

    Article  CAS  Google Scholar 

  • Yurkova IL, Schuchmann H-P, von Sonntag C (1999) Production of OH radicals in the autoxidation of the Fe(II)-EDTA system. J Chem Soc Perkin Trans 2 2049–2052

    Google Scholar 

  • Zarebska Z, Shugar D (1972) Radio-products of thymine in the presence of ethanol. Int J Radiat Biol 21:101–114

    CAS  Google Scholar 

  • Zegota H, von Sonntag C (1977) Radiation chemistry of carbohydrates, XV. OH radical induced scission of the glycosidic bond in disaccharides. Z Naturforsch 32b:1060–1067

    CAS  Google Scholar 

  • Zehner H, Flossmann W, Westhof E, Müller A (1976) Electron spin resonance of irradiated single crystals of uracil. Mol Phys 32:869–878

    CAS  Google Scholar 

  • Zehner H, Westhof E, Flossmann W, Müller A (1977) Formation of H-addition radicals in denine derivatives, part II. Z Naturforsch 32c:1–10

    CAS  Google Scholar 

  • Zhang R, Wang Y (2003) Independent generation of 5-(2′-deoxycitydinyl)methyl radical and formation of a novel cross-link lesion between 5-methylcytosine and guanine. J Am Chem Soc 1125:12795–12802

    CAS  PubMed  Google Scholar 

  • Zhang Z-Y, Kuwabara M, Yoshii G (1983) ESR and spin-trapping study of room-temperature radicals in γ-irradiated polycrystalline pyrimidine nucleotides. Radiat Res 93:213–231

    CAS  Google Scholar 

  • Zhao C, Shi Y, Wang W, Jia Z, Yao S, Fan B, Zheng R (2003) Fast repair of deoxythymidine radical anions by two polyphenols: rutin and quercitin. Biochem Pharmacol 65:1967–1971

    Article  CAS  PubMed  Google Scholar 

  • Zimbrick JD, Ward JF, Myers LS Jr (1969) Studies on the chemical basis of cellular radiosensitization by 5-bromouracil substitution in DNA. I. Pulse-and steady-state radiolysis of 5-bromouracil and thymine. Int J Radiat Biol 16:505–523

    CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2006). Nucleobases, Nucleosides and Nucleotides. In: Free-Radical-Induced DNA Damage and Its Repair. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30592-0_10

Download citation

Publish with us

Policies and ethics