Skip to main content

Derivatebewertung mit dem LIBOR-Marktmodell

  • Chapter
  • 4288 Accesses

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   149.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. Andersen, L. und J. Andreasen (2000): Volatility Skews and Extensions of the Libor Market Model. In: Applied Mathematical Finance, 7, 247–270.

    Google Scholar 

  2. Baxter, M. W. (1997): General Interest-Rate Models and the Universality of HJM, in: Michael A.H. Dempster und Stanley Pliska (Hrsg.): Mathematics of Derivative Securities, Cambridge, Cambridge University Press, 1999, 315–335.

    Google Scholar 

  3. Black, F. (1976): The Pricing of Commodity Contracts. In: Journal of Financial Economics, 3, 167–179.

    CrossRef  Google Scholar 

  4. Black, F. und M. Scholes (1973): The Pricing of Options and Corporate Liabilities, In: Journal of Political Economy, 81, 637–659.

    CrossRef  Google Scholar 

  5. Brace, A., D. Gatarek und M. Musiela(1997): The Market Model of Interest Rate Dynamics. In: Mathematical Finance, 7, 127–155.

    CrossRef  MathSciNet  Google Scholar 

  6. Brigo, D. und F. Mercurio (2001): Interest Rate Option Models, Berlin et al., Springer Verlag, 2001.

    Google Scholar 

  7. De Jong, F., J. Driessen und A. Pelsser (2001): Libor Market Models versus Swap Market Models for Pricing Interest Rate Derivatives: An Empirical Analysis. In: European Finance Review, 5, 201–237.

    CrossRef  Google Scholar 

  8. Geman, H., N. El Karoui und J.-C. Rochet (1995): Changes of Numéraire, Changes of Probability Measure, and Option Pricing. In: Journal of Applied Probability, 32, 443–458.

    CrossRef  MathSciNet  Google Scholar 

  9. Glasserman, P. und S. G. Kou (2003): The Term Structure of Simple Forward Rates With Jump Risk. In: Mathematical Finance, 13, 383–410.

    CrossRef  MathSciNet  Google Scholar 

  10. Heath, D., R. Jarrow und A. Morton (1992): Bond Pricing and the Term Structure of Interest Rates: A New Methodology for Contingent Claims Valuation. In: Econometrica, 60, 77–105.

    Google Scholar 

  11. Ho, T. S. und S.-B. Lee (1986): Term Structure Movements and the Pricing of Interest Rate Contingent Claims. In: The Journal of Finance, 41, 1011–1029.

    Google Scholar 

  12. Hull, J. (2003): Options, Futures, and Other Derivatives, 5. Auflage, Upper Saddle River, Prentice Hall, 2003.

    Google Scholar 

  13. Hull, J. und A. White (1990): Pricing Interest Rate Derivative Securities. In: The Review of Financial Studies, 3, 573–592.

    CrossRef  Google Scholar 

  14. Hull, J. und A. White (2000): Forward Rate Volatilities, Swap Rate Volatilities, and the Implementation of the LIBOR Market Model. In: The Journal of Fixed Income, 10 (September), 46–62.

    Google Scholar 

  15. Jäcket, P. und R. Rebonato (2000): Linking Caplet and Swaption Volatilities in a BGM/J Framework: Approximate Solutions, Arbeitspapier, Quantitative Research Centre of the Royal Bank of Scotland Group.

    Google Scholar 

  16. Jamshidian, F. (1997): LIBOR and Swap Market Models and Measures. In: Finance and Stochastics, 1, 292–330.

    CrossRef  Google Scholar 

  17. Joshi, M. und R. Rebonato (2003): A Displaced-Diffusion Stochastic Volatility LIBOR Market Model: Motivation, Definition and Implementation. In: Quantitative Finance, 658–469.

    Google Scholar 

  18. Lin, S. H. (1999): On Stochastic Models of Interest Rates with Jumps, PhD-Thesis, University of California, Berkley, 1999.

    Google Scholar 

  19. Longstaff, F. A., P. Santa-Clara und E. S. Schwartz (2001): The Relative Valuation of Caps and Swaptions: Theory and Empirical Evidence. In: The Journal of Finance, 56, 2067–2109.

    CrossRef  Google Scholar 

  20. Miltersen, K. R., K. Sandmann und D. Sondermann (1997): Closed Form Solutions for Term Structure Derivatives with Log-Normal Interest Rates. In: The Journal of Finance, 52, 409–430.

    Google Scholar 

  21. Muck, M. (2003): Do Surprising Central Bank Moves Influence Interest Rate Derivatives’ Prices? Empirical Evidence From the European Cap and Swaption Markets, Arbeitspapier, WHU — Otto Beisheim Hochschule.

    Google Scholar 

  22. Musiela, M. und M. Rutkowski (1997): Martingale Methods in Financial Modelling, Berlin et al., Springer Verlag, 1997.

    Google Scholar 

  23. Rebonato, R. (1998): Interest Rate Option Models, 2. Auflage, Chichester, John Wiley & Sons, 1998.

    Google Scholar 

  24. Rebonato, R. (2002): Modern Pricing of Interest-Rate Derivatives, Princeton, Princeton University Press, 2002.

    Google Scholar 

  25. Rudolf, M. (1998): Heath, Jarrow, Morton Made Easy — Zur präferenzfreien Bewertung von Swaptions. In: Finanzmarkt und Portfolio Management, 12, 381–387.

    Google Scholar 

  26. Sandmann, K. und D. Sondermann (1995): Log-Normal Interest Rate Models: Stability and Methodology, Arbeitspapier, Universität Bonn.

    Google Scholar 

  27. Sandmann, K. und D. Sondermann (1997): A Note on the Stability of Lognormal Interest Rate Models and the Pricing of Eurodollar Futures, Arbeitspapier, Universität Bonn.

    Google Scholar 

  28. Wilhelm, J. (1999): A Fresh View on the Ho-Lee Model of the Term Structure From a Stochastic Discounting Persepective. In: W. Kürsten und J. Wilhelm (Hrsg.): OR Spektrum Sonderheft — Finance and Banking, OR Spektrum, 21, 9–34.

    Google Scholar 

  29. Wilhelm, J. (2001): Zinsstruktur. In: W. Gerke und M. Steiner (Hrsg.): Handwörterbuch des Bank-und Finanzwesens, 3. Auflage, Stuttgart, Schäffer-Poeschel, 2358–2366.

    Google Scholar 

  30. Zühlsdorff, C. (1999): Extended Market Models with Affine and Quadratic Volatility, Arbeitspapier, Universität Bonn.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Muck, M., Rudolf, M. (2006). Derivatebewertung mit dem LIBOR-Marktmodell. In: Kürsten, W., Nietert, B. (eds) Kapitalmarkt, Unternehmensfinanzierung und rationale Entscheidungen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30516-5_24

Download citation

  • DOI: https://doi.org/10.1007/3-540-30516-5_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27691-3

  • Online ISBN: 978-3-540-30516-3

  • eBook Packages: Business and Economics (German Language)