Meromorphic Inner Functions, Toeplitz Kernels and the Uncertainty Principle

  • N. Makarov
  • A. Poltoratski
Part of the Mathematical Physics Studies book series (MPST, volume 27)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.B. Aleksandrov: Proceedings of LOMI Seminars 170, 7 (1989)MATHGoogle Scholar
  2. 2.
    A.B. Aleksandrov: Mat. Zametki 39, 59 (1982)Google Scholar
  3. 3.
    S.A. Avdonin, S.A. Ivanov: Families of exponentials (Cambridge Univ. Press, Cambridge 1995)MATHGoogle Scholar
  4. 4.
    A. Beurling, P. Malliavin: Acta Math. 107 291 (1962)MathSciNetMATHGoogle Scholar
  5. 5.
    A. Beurling, P. Malliavin: Acta Math. 118 79 (1967)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    R.P. Boas: Entire functions (Academic Press, New York 1954)MATHGoogle Scholar
  7. 7.
    G. Borg: Uniqueness theorems in the spectral theory of y″ + (λ − q(x))y = 0. In: Proc. 11-th Scandinavian Congress of Mathematicians (Johan Grundt Tanums Forlag, Oslo 1952) pp 276–287Google Scholar
  8. 8.
    A. Böttcher, B. Silbermann: Analysis of Toeplitz operators (Academie-Verlag and Springer-Verlag, Berlin 1990)MATHGoogle Scholar
  9. 9.
    J. Bourgain: Pacific J. Math. 121, 47 (1986)MATHMathSciNetGoogle Scholar
  10. 10.
    D. Clark: J. Anal. Math. 25, 169 (1972)MATHGoogle Scholar
  11. 11.
    R.R. Coifman, G. Weiss: Bull. AMS 83, 569 (1977)MathSciNetMATHGoogle Scholar
  12. 12.
    L. De Branges: Hilbert spaces of entire functions (Prentice-Hall, Englewood Cliffs, NJ 1968)MATHGoogle Scholar
  13. 13.
    K. Dyakonov: J. Anal. Math. 86, 247 (2002)MATHMathSciNetGoogle Scholar
  14. 14.
    H. Dym, H.P. McKean: Gaussian processes, function theory and the inverse spectral problem (Academic Press, New York 1976)MATHGoogle Scholar
  15. 15.
    W.N. Everitt: J. London Math. Soc. 4, 443 (1972)MATHMathSciNetGoogle Scholar
  16. 16.
    J. Garnett: Bounded analytic functions (Academic Press, New York 1981)MATHGoogle Scholar
  17. 17.
    F. Gesztezy, B. Simon: Trans. AMS 352, 2765 (2000)CrossRefGoogle Scholar
  18. 18.
    F. Gesztezy, B. Simon: J. d’Analyse Math. 73, 267 (1997)CrossRefGoogle Scholar
  19. 19.
    V.P. Havin, B. Jöricke: The uncertainty principle in harmonic analysis (Springer-Verlag, Berlin 1994)MATHGoogle Scholar
  20. 20.
    J.R. Higgins: Completeness and basis properties of sets of special functions (Cambridge Univ. Press, Cambridge 1977)MATHGoogle Scholar
  21. 21.
    H. Hochstadt, B. Lieberman: SIAM J. Appl. Math. 34, 676 (1978)MathSciNetCrossRefGoogle Scholar
  22. 22.
    M. Horváth: Inverse spectral problems and closed exponential systems, Preprint (2004)Google Scholar
  23. 23.
    S.V. Hruschev, N.K. Nikolskii, B.S. Pavlov: Lecture Notes in Math. 864, 214Google Scholar
  24. 24.
    A.M. Khodakovsky: Inverse spectral problem with partial information on the potential. PhD Thesis, Caltech (1999)Google Scholar
  25. 25.
    P. Koosis: The logarithmic integral, Vol. I & II (Cambridge Univ. Press, Cambridge 1988)MATHGoogle Scholar
  26. 26.
    M. Krein: Izv. AN SSSR 11, 309 (1947)MATHMathSciNetGoogle Scholar
  27. 27.
    P.D. Lax, R.S. Phillips: Scattering theory (Academic Press, New York 1967)MATHGoogle Scholar
  28. 28.
    B. Levin: Distribution of zeros of entire functions (AMS, Providence, RI 1980)Google Scholar
  29. 29.
    N. Levinson: Gap and density theorems (AMS, New York 1940)Google Scholar
  30. 30.
    B.M. Levitan, I.S. Sargsjan: Sturm-Liouville and Dirac operators (Kluwer, Dordrecht 1991)Google Scholar
  31. 31.
    V. Marchenko: Trudy Mosk. Mat. Obsch. 1, 327 (1952)Google Scholar
  32. 32.
    V. Marchenko: Sturm-Liouville operators and applications (Birkhauser, Basel 1986)MATHGoogle Scholar
  33. 33.
    R. Paley, N. Wiener: Fourier transform in the complex domains (AMS, New York 1934)Google Scholar
  34. 34.
    N.K. Nikolskii: Treatise on the shift operator (Springer-Verlag, Berlin — New York 1986)Google Scholar
  35. 35.
    N.K. Nikolskii: Operators, functions, and systems: an easy reading, Vol. I & II (AMS, Providence, RI 2002)Google Scholar
  36. 36.
    D. Sarason: Sub-Hardy Hilbert spaces in the unit disk. In: Univ. of Arkansas Lecture Notes in the Math. Sciences, vol 10 (J. Wiley and Sons, New York 1994)Google Scholar
  37. 37.
    D. Sarason: Oper. Theory Adv. Appl. 71, 153 (1994)MATHMathSciNetGoogle Scholar
  38. 38.
    R. Redheffer: Advances in Math. 24, 1 (1977)MATHMathSciNetCrossRefGoogle Scholar
  39. 39.
    E.C. Titchmarsh: Eigenfunction expansion associated with second order differential equations (Clarendon Press, Oxford 1946)Google Scholar
  40. 40.
    S. Treil, A. Volberg: Proceedings of LOMI Seminars 149, 38 (1986)MATHGoogle Scholar
  41. 41.
    R.M. Young: An introduction to non-harmonic Fourier series (Academic Press, New York 1980)Google Scholar
  42. 42.
    A. Zygmund: Trigonometric series, Vol. I & II (Cambridge University Press, Cambridge 1959)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • N. Makarov
    • 1
  • A. Poltoratski
    • 2
  1. 1.Department of MathematicsCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Department of MathematicsTexas A&M UniversityCollege StationUSA

Personalised recommendations