Advertisement

Physical Optimization

  • Uwe Oelfke
  • Simeon Nill
  • Jan J. Wilkens

Keywords

Planning Target Volume Radiat Oncol Biol Phys Intensity Modulate Radiation Therapy IMRT Plan Multileaf Collimator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bortfeld T (1999) Optimized planning using physical objectives and constraints. Semin Radiat Oncol 9:20–34PubMedGoogle Scholar
  2. 2.
    Bortfeld T (2003) Physical optimization. In: Palta JR, Mackie TR (eds), Intensity modulated radiation therapy — the state of the art, Medical Physics Monograph No. 29, pp 51–75Google Scholar
  3. 3.
    Webb S (2001) Intensity modulated radiation therapy. Bristol (IOP) PublishingGoogle Scholar
  4. 4.
    Webb S (2003) The physical basis of IMRT and inverse planning. Br J Radiol 76:678–689PubMedCrossRefGoogle Scholar
  5. 5.
    Romeijn HE, Dempsey JF, Li JG (2004) A unifying framework for multi-criteria fluence map optimization models. Phys Med Biol 49:1991–2013PubMedCrossRefGoogle Scholar
  6. 6.
    Lahanas M, Schreibmann E, Baltas D (2003) Multiobjective inverse planning for intensity modulated radiotherapy with constraint-free gradient-based optimization algorithms. Phys Med Biol 48:2843–2871PubMedCrossRefGoogle Scholar
  7. 7.
    Küfer KH, Hammacher HW, Bortfeld T (2000) A multicriteria optimization approach for inverse radiotherapy planning. In: Schlegel W, Bortfeld T (eds), XIII International Conference on the Use of Computers in Radiation Therapy. (XIII ICCR). Springer, Berlin Heidelberg New YorkGoogle Scholar
  8. 8.
    Ling CC, Humm J, Larson S, Amols H, Fuks Z, Leibel S, Koutcher JA (2000) Towards multidimensional radiotherapy (MD-CRT): biological imaging andbiological conformality. Int J Radiat Oncol Biol Phys 47:551–560PubMedCrossRefGoogle Scholar
  9. 9.
    Niemierko A (1997) Reporting and analyzing dose distributions: a concept of equivalent uniform dose. Med Phys 24:103–110PubMedCrossRefGoogle Scholar
  10. 10.
    Thieke C (2003) Multicriteria optimization in inverse radiotherapy planning. University of HeidelbergGoogle Scholar
  11. 11.
    Brahme A, Roos JE, Lax I (1982) Solution of an integral equation encountered in rotation therapy, Phys Med Biol 7:1221–1229CrossRefGoogle Scholar
  12. 12.
    Fraass BA, Kessler ML, McShan DL, Marsh LH, Watson BA, Dusseau WJ, Eisbruch A, Sandler HM, Lichter AS (1999) Optimization and clinical use of multisegment intensity-modulated radiation therapy for high-dose conformal therapy. Semin Radiat Oncol 9:60–77PubMedGoogle Scholar
  13. 13.
    Oelfke U, Bortfeld T (2001) Inverse planning for photon and proton beams. Med Dosim Summer 26:113–124CrossRefGoogle Scholar
  14. 14.
    Kubo HD, Wilder RB, Pappas CT (1999) Impact of collimator leaf width on stereotactic radiosurgery and 3D conformal radiotherapy treatment plans. Int J Radiat Oncol Biol Phys 44:937–945PubMedCrossRefGoogle Scholar
  15. 15.
    Siebers JV, Lauterbach M, Keall PJ, Mohan R (2002) Incorporating multi-leaf collimator leaf sequencing into iterative IMRT optimization. Med Phys 29:952–959PubMedCrossRefGoogle Scholar
  16. 16.
    Alber M, Nüsslin F (2001) Optimization of intensity modulated radiotherapy under constraints for static and dynamic MLC delivery. Phys Med Biol 46:3229–3239PubMedCrossRefGoogle Scholar
  17. 17.
    Litzenberg DW, Moran JM, Fraass BA (2002) Incorporation of realistic delivery limitations into dynamic MLC treatment delivery. Med Phys 29:810–820PubMedCrossRefGoogle Scholar
  18. 18.
    Langer M, Brown R, Urie M, Leong J, Stracher M, Shapiro J (1990) Large scale optimization of beam weights under dose-volume restrictions. Int J Radiat Oncol Biol Phys 18:887–893PubMedGoogle Scholar
  19. 19.
    Bortfeld T, Stein J, Preiser K (1997) Clinically relevant intensity modulation optimization using physical criteria. In: Leavitt DD, Starkschall G (eds) XII International Conference on the Use of Computers in Radiation Therapy (XII ICCR), Salt Lake City, USA. Medical Physics Publishing, Madison, WI, pp 1–4Google Scholar
  20. 20.
    Spirou SV, Chui CS (1998) A gradient inverse planning algorithm with dose-volume constraints. Med Phys 25:321–333PubMedCrossRefGoogle Scholar
  21. 21.
    Deasy JO (1997) Multiple local minima in radiotherapy optimization problems with dose-volume constraints. Med Phys 24:1157–1161PubMedCrossRefGoogle Scholar
  22. 22.
    Llacer J, Deasy JO, Bortfeld TR, Solberg TD, Promberger C (2003) Absence of multiple local minima effects in intensity modulated optimization with dose-volume constraints. Phys Med Biol 48:183–210PubMedCrossRefGoogle Scholar
  23. 23.
    Wu Q, Mohan R (2002) Multiple local minima in IMRT optimization based on dose-volume criteria. Med Phys 29:1514–1527PubMedCrossRefGoogle Scholar
  24. 24.
    Cotrutz C, Xing L (2003) IMRT dose shaping with regionally variable penalty scheme. Med Phys 30:544–551PubMedCrossRefGoogle Scholar
  25. 25.
    Alber M, Meedt G, Nüsslin F, Reemtsen R (2002) On the degeneracy of the IMRT optimization problem. Med Phys 29:2584–2589PubMedCrossRefGoogle Scholar
  26. 26.
    Llacer J, Agazaryan N, Solberg TD, Promberger C (2004) Degeneracy, frequency response and filtering in IMRT optimization. Phys Med Biol 49:2853–2880PubMedCrossRefGoogle Scholar
  27. 27.
    Webb S, Convery DJ, Evans PM (1998) Inverse planning with constraints to generate smoothed intensity-modulated beams. Phys Med Biol 43:2785–2794PubMedCrossRefGoogle Scholar
  28. 28.
    Alber M, Nüsslin F (2000) Intensity modulated photon beams subject to a minimal surface smoothing constraint. Phys Med Biol 45:N49–52PubMedCrossRefGoogle Scholar
  29. 29.
    Keller-Reichenbecher MA, Bortfeld T, Levegrun S, Stein J, Preiser K, Schlegel W (1999) Intensity modulation with the “step and shoot” technique using a commercial MLC: a planning study. Multileaf collimator. Int J Radiat Oncol Biol Phys 45:1315–1324PubMedCrossRefGoogle Scholar
  30. 30.
    Holmes T, Mackie TR (1994) A comparison of three inverse treatment planning algorithms. Phys Med Biol 39:91–106PubMedCrossRefGoogle Scholar
  31. 31.
    Censor Y (2003) Mathematical optimization for the inverse problem of intensity modulated radiation therapy. In: Palta JR, Mackie TR (eds) Intensity-modulated radiation therapy: the stateof the art. American Association of Physicists in Medicine. Medical Physics Publishing, Madison, pp 25–49Google Scholar
  32. 32.
    Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1992) Numerical recipes in C: the art of scientific computing. Cambridge University Press, CambridgeGoogle Scholar
  33. 33.
    Zhang X, Liu H, Wang X, Dong L, Wu Q, Mohan R (2004) Speed and convergence properties of gradient algorithms for optimization of IMRT. Med Phys 31:1141–1152PubMedCrossRefGoogle Scholar
  34. 34.
    Webb S (1989) Optimisation of conformal radiotherapy dose distributions by simulated annealing. Phys Med Biol 34:1349–1370PubMedCrossRefGoogle Scholar
  35. 35.
    Webb S (1997) The physics of conformal radiotherapy: advances in technology. Institute of Physics Publishing, Bristol PhiladelphiaGoogle Scholar
  36. 36.
    Kirkpatrick CD, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680PubMedGoogle Scholar
  37. 37.
    Geman S, Geman D (1984) Stochastic relaxation, Gibbs distribution and the Bayesian restoration in images. IEEE Trans Patt Anal Mac Int 6:721–741CrossRefGoogle Scholar
  38. 38.
    Carol MP, Nash RV, Campbell RC, Huber R, Sternick E (1997) The development of a clinically intuitive approach to inverse treatment planning: partial volume prescription and area cost function. In: Leavitt DD, Starkschall G (eds) Proceedings of the XIIth International Conference on the Use of Computers in Radiation Therapy. Medical Physics Publishing, Madison, pp 317–319Google Scholar
  39. 39.
    Shepard DM, Earl MA, Li XA, Naqvi S, Yu C (2002) Direct aperture optimization: a turnkey solution for step-and-shoot IMRT. Med Phys 29:1007–1018PubMedCrossRefGoogle Scholar
  40. 40.
    Szu H, Hartley R (1987) Fast simulated annealing. Phys Lett A 122:157–162CrossRefGoogle Scholar
  41. 41.
    Cotrutz C, Xing L (2003) Segment-based dose optimization using a genetic algorithm. Phys Med Biol 48:2987–2998PubMedCrossRefGoogle Scholar
  42. 42.
    Li Y, Yao J, Yao D (2003) Genetic algorithm based deliverable segments optimization for static intensity-modulated radiotherapy. Phys Med Biol 48:3353–3374PubMedCrossRefGoogle Scholar
  43. 43.
    Shepard DM, Ferris MC, Olivera GH, Mackie TR (1999) Optimizing the delivery of radiation therapy to cancer patients. SIAM Rev 41:721–744CrossRefGoogle Scholar
  44. 44.
    Sternick ES, Bleier AR, Carol MP, Curran BH, Holmes TW, Kania AA, Lalonde R, Larson LS (1997) Intensity modulated radiation therapy: what photon energy is best? In: Leavitt DD, Starkschall G (eds) Proceedings of the XIIth International Conference on the Use of Computers in Radiation Therapy. Medical Physics Publishing, Madison, pp 418–419Google Scholar
  45. 45.
    Bortfeld T, Schlegel W (1993) Optimization of beam orientations in radiation therapy: some theoretical considerations. Phys Med Biol 38:291–304PubMedCrossRefGoogle Scholar
  46. 46.
    Stein J, Mohan R, Wang XH, Bortfeld T, Wu Q, Preiser K, Ling CC, Schlegel W (1997) Number and orientations of beams in intensity-modulated radiation treatments. Med Phys 24:149–160PubMedCrossRefGoogle Scholar
  47. 47.
    Pugachev A, Li JG, Boyer AL, Hancock SL, Le QT, Donaldson SS, Xing L (2001) Role of beam orientation optimization in intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 50:551–560PubMedCrossRefGoogle Scholar
  48. 48.
    Söderström S, Brahme A (1995) Which is the most suitable number of photon beamportals in coplanar radiation therapy? Int J Radiat Oncol Biol Phys 33:151–159PubMedCrossRefGoogle Scholar
  49. 49.
    Das S, Cullip T, Tracton G, Chang S, Marks L, Anscher M, Rosenman J (2003) Beam orientation selection for intensity-modulated radiation therapy based on target equivalent uniform dose maximization. Int J Radiat Oncol Biol Phys 55:215–224PubMedCrossRefGoogle Scholar
  50. 50.
    Rowbottom CG, Nutting CM, Webb S (2001) Beam-orientation optimization of intensity-modulated radiotherapy: clinical application to parotid gland tumours. Radiother Oncol 59:169–177PubMedCrossRefGoogle Scholar
  51. 51.
    Hou Q, Wang J, Chen Y, Galvin JM (2003) Beam orientation optimization for IMRT by a hybrid method of the genetic algorithm and the simulated dynamics. Med Phys 30:2360–2367PubMedCrossRefGoogle Scholar
  52. 52.
    Webb S (1995) The problem of isotropically orienting N converging vectors in space with application to radiotherapy planning. Phys Med Biol 40:945–954PubMedCrossRefGoogle Scholar
  53. 53.
    Pugachev A, Xing L (2001) Pseudo beam’s-eye-view as applied to beam orientation selection in intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 51:1361–1370PubMedCrossRefGoogle Scholar
  54. 54.
    Shepard DM, Earl MA, Yu CX, Xiao Y (2003) Aperture-based inverse planning. In: Palta JR, Mackie TR (eds) Intensity-modulated radiation therapy: the state of the art. Medical Physics Publishing, Madison, pp 115–137Google Scholar
  55. 55.
    De Neve W, De Wagter C, De Jaeger K, Thienpont M, Colle C, Derycke S, Schelfhout J (1996) Planning and delivering high doses to targets surrounding the spinal cord at the lower neck and upper mediastinal levels: static beam-segmentation technique executed with a multileaf collimator. Radiother Oncol 40:271–279PubMedCrossRefGoogle Scholar
  56. 56.
    De Gersem W, Claus F, De Wagter C, De Neve W (2001) An anatomy-based beam segmentation tool for intensity-modulated radiation therapy and its application to head-and-neck cancer. Int J Radiat Oncol Biol Phys 51:849–859PubMedCrossRefGoogle Scholar
  57. 57.
    Xiao Y, Galvin J, Hossain M, Valicenti R (2000) An optimized forward-planning technique for intensity modulated radiation therapy. Med Phys 27:2093–2099PubMedCrossRefGoogle Scholar
  58. 58.
    Bednarz G, Michalski D, Houser C, Huq MS, Xiao Y, Anne PR, Galvin JM (2002) The use of mixed-integer programming for inverse treatment planning with pre-defined field segments. Phys Med Biol 47:2235–2245PubMedCrossRefGoogle Scholar
  59. 59.
    De Gersem W, Claus F, de Wagter C, Van Duyse B, De Neve W (2001) Leaf position optimization for step-and-shoot IMRT Int J Radiat Oncol Biol Phys 51:1371–1388PubMedCrossRefGoogle Scholar
  60. 60.
    Kestin LL, Sharpe MB, Frazier RC, Vicini FA, Yan D, Matter RC, Martinez AA, Wong JW (2000) Intensity modulation to improve dose uniformity with tangential breast radiotherapy:initial clinical experience. Int J Radiat Oncol Biol Phys 48:1559–1568PubMedCrossRefGoogle Scholar
  61. 61.
    Earl MA, Shepard DM, Naqvi S, Li XA, Yu CX (2003) Inverse planning for intensity-modulated arc therapy using direct aperture optimization. Phys Med Biol 48:1075–1089PubMedCrossRefGoogle Scholar
  62. 62.
    Fiveash JB, Murshed H, Duan J, Hyatt M, Caranto J, Bonner JA, Popple RA (2002) Effect of multileaf collimator leaf width on physical dose distributions in the treatment of CNS and head and neck neoplasms with intensity modulated radiation therapy. Med Phys 29:1116–1119PubMedCrossRefGoogle Scholar
  63. 63.
    Bortfeld T, Oelfke U, Nill S (2000) What is the optimum leaf width of a multileaf collimator? Med Phys 27:2494–2502PubMedCrossRefGoogle Scholar
  64. 64.
    Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-WesleyGoogle Scholar
  65. 65.
    Falkenauer E (1998) Genetic algorithms and grouping problems. Wiley, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Uwe Oelfke
    • 1
  • Simeon Nill
    • 1
  • Jan J. Wilkens
    • 1
  1. 1.Dept. of Medical PhysicsDKFZ HeidelbergHeidelbergGermany

Personalised recommendations