Advertisement

4D Treatment Planning

  • Paul J. Keall

Keywords

Planning Target Volume Radiat Oncol Biol Phys Intensity Modulate Radiation Therapy Compute Tomogra Deformable Image Registration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Keall PJ, Chen GTY, Joshi S, Mackie TR, Stevens CW (2003) Time — the fourth dimension in radiotherapy (ASTRO Panel Discussion). Int J Radiat Oncol Biol Phys 57(Suppl.2):S8–S9Google Scholar
  2. 2.
    Bortfeld T, Chen GT (2004) Introduction: intrafractional organ motion and its management. Semin Radiat Oncol 14(1):1CrossRefGoogle Scholar
  3. 3.
    Mayo JR, Müller NL, Henkelman RM (1987) The double-fissure sign: a motion artifact on thin-section CT scans. Radiology 165:580–581PubMedGoogle Scholar
  4. 4.
    Ritchie CJ, Hseih J, Gard MF, Godwin JD, Kim Y, Crawford CR (1994) Predictive respiratory gating: a new method to reduce motion artifacts on CT scans. Radiology 190(3):847–852PubMedGoogle Scholar
  5. 5.
    Shepp LA, Hilal SK, Schulz RA (1979) The tuning fork artifact in computerized tomography. Comput Graph Image Proc 10:246–255Google Scholar
  6. 6.
    Tarver RD, Conces DJ, Godwin JD (1988) Motion artifacts on CT simulate bronchiectasis. Am J Roentgenol 151(6):1117–1119Google Scholar
  7. 7.
    Shimizu S, Shirato H, Ogura S, Akita-Dosaka H, Kitamura K, Nishioka T, Kagei K, Nishimura M, Miyasaka K (2001) Detection of lung tumor movement in real-time tumor-tracking radiotherapy. Int J Radiat Oncol Biol Phys 51(2):304–310PubMedCrossRefGoogle Scholar
  8. 8.
    Keall PJ, Kini VR, Vedam SS, Mohan R (2002) Potential radiotherapy improvements with respiratory gating. Australas Phys Eng Sci Med 25(1):1–6PubMedCrossRefGoogle Scholar
  9. 9.
    Ritchie CJ, Godwin JD, Crawford CR, Stanford W, Anno H, Kim Y (1992) Minimum scan speeds for suppresion of motion artifacts in CT. Radiology 185:37–42PubMedGoogle Scholar
  10. 10.
    Shimizu S, Shirato H, Kagei K, Nishioka T, Bo X, Dosaka-Akita H, Hashimoto S, Aoyama H, Tsuchiya K, Miyasaka K (2000) Impact of respiratory movement on the computed tomographic images of small lung tumors in three-dimensional (3D) radiotherapy. Int J Radiat Oncol Biol Phys 46(5):1127–1133PubMedCrossRefGoogle Scholar
  11. 11.
    Vedam SS, Keall PJ, Kini VR, Mostafavi H, Shukla HP, Mohan R (2003) Acquiring a four-dimensional computed tomography dataset using an external respiratory signal. Phys Med Biol 48(1):45–62PubMedCrossRefGoogle Scholar
  12. 12.
    Ford EC, Mageras GS, Yorke E, Ling CC (2003) Respiration correlated spiral CT: a method of measuring respiratory-induced anatomic motion for radiation treatment planning. Med Phys 30(1):88–97PubMedCrossRefGoogle Scholar
  13. 13.
    van Herk M, Remeijer P, Rasch C, Lebesque JV (2000) Theprobability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy. Int J Radiat Oncol Biol Phys 47(4):1121–1135PubMedCrossRefGoogle Scholar
  14. 14.
    Balter JM, Ten Haken RK, Lawrence TS, Lam KL, Robertson JM (1996) Uncertainties in CT-based radiation therapy treatment planning associated with patient breathing. Int J Radiat Oncol Biol Phys 36(1):167–174PubMedCrossRefGoogle Scholar
  15. 15.
    Chen GT, Kung JH, Beaudette KP (2004) Artifacts in computed tomography scanning of moving objects. Semin Radiat Oncol 14(1):19–26PubMedCrossRefGoogle Scholar
  16. 16.
    ICRU (1999) Prescribing, recording and reporting photon beam therapy. ICRU Report 62 (supplement to ICRU Report 50). International Commission on Radiation Units and Measurements, Bethesda, MDGoogle Scholar
  17. 17.
    Chetty IJ, Rosu M, Tyagi N, Marsh LH, McShan DL, Balter JM, Fraass BA, Ten Haken RK (2003) A fluence convolution method to account for respiratory motion in three-dimensional dose calculations of the liver: a Monte Carlo study. Med Phys 30(7):1776–1780PubMedCrossRefGoogle Scholar
  18. 18.
    Van Herk M (2004) Errors and margins in radiotherapy. Semin Radiat Oncol 14(1):52–64PubMedCrossRefGoogle Scholar
  19. 19.
    Keall P (2004) 4-Dimensional computed tomography imaging and treatment planning. Semin Radiat Oncol 14(1):81–90PubMedCrossRefGoogle Scholar
  20. 20.
    Yu CX, Jaffray DA, Wong JW (1998) The effects of intra-fraction organ motion on the delivery of dynamic intensity modulation. Phys Med Biol 43(1):91–104PubMedCrossRefGoogle Scholar
  21. 21.
    Keall PJ, Kini V, Vedam SS, Mohan R (2001) Motion adaptive X-ray therapy: a feasibility study. Phys Med Biol 46(1):1–10PubMedCrossRefGoogle Scholar
  22. 22.
    Jiang SB, Pope C, Al Jarrah KM, Kung JH, Bortfeld T, Chen GT (2003) An experimental investigation on intra-fractional organ motion effects in lung IMRT treatments. Phys Med Biol 48(12):1773–1784PubMedCrossRefGoogle Scholar
  23. 23.
    Bortfeld T, Jokivarsi K, Goitein M, Kung J, Jiang SB (2002) Effects of intra-fraction motion on IMRT dose delivery: statistical analysis and simulation. Phys Med Biol 47(13):2203–2220PubMedCrossRefGoogle Scholar
  24. 24.
    Chui CS, Yorke E, Hong L (2003) The effects of intra-fraction organmotion on the delivery of intensity-modulated field with a multileaf collimator. Med Phys 30(7):1736–1746PubMedCrossRefGoogle Scholar
  25. 25.
    George R, Keall PJ, Kini VR, Vedam SS, Siebers JV, Wu Q, Lauterbach MH, Arthur DW, Mohan R (2003) Quantifying the effect of intrafraction motion during breast IMRT planning and dose delivery. Med Phys 30(4):552–562PubMedCrossRefGoogle Scholar
  26. 26.
    Kung JH, Zygmanski P, Choi N, Chen GT (2003) A method of calculating a lung clinical target volume DVH for IMRT with intrafractional motion. Med Phys 30(6):1103–1109PubMedCrossRefGoogle Scholar
  27. 27.
    Murphy MJ (2004) Tracking moving organs in real time. Semin Radiat Oncol 14(1):91–100PubMedCrossRefGoogle Scholar
  28. 28.
    Shirato H, Seppenwoolde Y, Kitamura K, Onimura R, Shimizu S (2004) Intrafractional tumor motion: lung and liver. Semin Radiat Oncol 14(1):10–18PubMedCrossRefGoogle Scholar
  29. 29.
    Bortfeld T, Jiang SB, Rietzel E (2004) Effects of motion on the total dose distribution. Semin Radiat Oncol 14(1):41–51PubMedCrossRefGoogle Scholar
  30. 30.
    Kwa SL, Lebesque JV, Theuws JC, Marks LB, Munley MT, Bentel G, Oetzel D, Spahn U, Graham MV, Drzymala RE, Purdy JA, Lichter AS, Martel MK, Ten Haken RK (1998) Radiation pneumonitis as a function of mean lung dose: an analysis of pooled data of 540 patients. Int J Radiat Oncol Biol Phys 42(1):1–9PubMedCrossRefGoogle Scholar
  31. 31.
    Graham MV, Purdy JA, Emami B, Harms W, Bosch W, Lockett MA, Perez CA (1999) Clinical dose-volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer(NSCLC). Int J Radiat Oncol Biol Phys 45(2):323–329PubMedCrossRefGoogle Scholar
  32. 32.
    Hernando ML, Marks LB, Bentel GC, Zhou SM, Hollis D, Das SK, Fan M, Munley MT, Shafman TD, Anscher MS, Lind PA (2001) Radiation-induced pulmonary toxicity: a dose-volume histogram analysis in 201 patients with lung cancer. Int J Radiat Oncol Biol Phys 51(3):650–659PubMedCrossRefGoogle Scholar
  33. 33.
    Oetzel D, Schraube P, Hensley F, Sroka-Perez G, Menke M, Flentje M (1995) Estimation of pneumonitis risk in three-dimensional treatment planning using dose-volume histogram analysis. Int J Radiat Oncol Biol Phys 33(2):455–460PubMedCrossRefGoogle Scholar
  34. 34.
    Seppenwoolde Y, Lebesque JV, de Jaeger K, Belderbos JS, Boersma LJ, Schilstra C, Henning GT, Hayman JA, Martel MK, Ten Haken RK (2003) Comparing different NTCP models that predict the incidence of radiation pneumonitis. Int J Radiat Oncol Biol Phys 55(3):724–735PubMedCrossRefGoogle Scholar
  35. 35.
    Yorke ED, Jackson A, Rosenzweig KE, Merrick SA, Gabrys D, Venkatraman ES, Burman CM, Leibel SA, Ling CC (2002) Dose-volume factors contributing to the incidence of radiation pneumonitis in non-small-cell lung cancer patients treated with three-dimensional conformal radiation therapy. Int J Radiat Oncol Biol Phys 54(2):329–339PubMedCrossRefGoogle Scholar
  36. 36.
    Keall PJ, Starkschall G, Shukla H, Forster KM, Ortiz V, Stevens CW, Vedam SS, George R, Guerrero T, Mohan R (2004) Acquiring 4D thoracic CT scans using a multislice helical method. Phys Med Biol 49:2053–2067PubMedCrossRefGoogle Scholar
  37. 37.
    Giraud P, Antoine M, Larrouy A, Milleron B, Callard P, De Rycke Y, Carette MF, Rosenwald JC, Cosset JM, Housset M, Touboul E (2000) Evaluation of microscopic tumor extension in non-small-cell lung cancer for three-dimensional conformal radiotherapy planning. Int J Radiat Oncol Biol Phys 48(4):1015–1024PubMedCrossRefGoogle Scholar
  38. 38.
    Adler JR Jr, Murphy MJ, Chang SD, Hancock SL (1999) Image-guided robotic radiosurgery. Neurosurgery 44(6):1299–1306; discussion 306–307PubMedCrossRefGoogle Scholar
  39. 39.
    Grills IS, Yan D, Martinez AA, Vicini FA, Wong JW, Kestin LL (2003) Potential for reduced toxicity and dose escalation in the treatment of inoperable non-small-cell lung cancer: a comparison of intensity-modulated radiation therapy (IMRT), 3D conformal radiation, and elective nodal irradiation. Int JRadiat Oncol Biol Phys 57(3):875–890CrossRefGoogle Scholar
  40. 40.
    Korin HW, Ehman RL, Riederer SJ, Felmlee JP, Grimm RC (1992) Respiratory kinematics of the upper abdominal organs: a quantitative study. Magn Reson Med 23(1):172–178PubMedGoogle Scholar
  41. 41.
    Ross CS, Hussey DH, Pennington EC, Stanford W, Doornbos JF (1990) Analysis of movement of intrathoracic neoplasms using ultrafast computerized tomography. Int J Radiat Oncol Biol Phys 18(3):671–677PubMedGoogle Scholar
  42. 42.
    Seppenwoolde Y, Shirato H, Kitamura K, Shimizu S, van Herk M, Lebesque JV, Miyasaka K (2002) Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int J Radiat Oncol Biol Phys 53(4):822–834PubMedCrossRefGoogle Scholar
  43. 43.
    Sixel KE, Ruschin M, Tirona R, Cheung PC (2003) Digital fluoroscopy to quantify lung tumor motion: potential for patient-specific planning target volumes. Int J Radiat Oncol Biol Phys 57(3):717–723PubMedCrossRefGoogle Scholar
  44. 44.
    Keall PJ, Joshi S, Vedam SS, Siebers JV, Kini VR, Mohan R (2005) Four-dimensional radiotherapy planning for DMLC-based respiratory motion tracking. Med Phys 32:942PubMedCrossRefGoogle Scholar
  45. 45.
    Kini VR, Vedam SS, Keall PJ, Patil S, Chen C, Mohan R (2003) Patient training in respiratory-gated radiotherapy. Med Dosim 28(1):7–11PubMedCrossRefGoogle Scholar
  46. 46.
    Vedam SS, Kini VR, Keall PJ, Ramakrishnan V, Mostafavi H, Mohan R (2003) Quantifying the predictability of diaphragm motion during respiration with a noninvasive external marker. Med Phys 30(4):505–513PubMedCrossRefGoogle Scholar
  47. 47.
    Bowden P, Fisher R, MacManus M, Wirth A, Duchesne G, Millward M, McKenzie A, Andrews J, Ball D (2002) Measurement of lung tumor volumes using three-dimensional computer planning software. Int J Radiat Oncol Biol Phys 53(3):566–573PubMedCrossRefGoogle Scholar
  48. 48.
    Rodrigus P, Van den Weyngaert D, Van den Bogaert W (1987) The value of treatment portal films in radiotherapy for bronchial carcinoma. Radiother Oncol 9(1):27–31PubMedGoogle Scholar
  49. 49.
    Booth JT, Zavgorodni SF (1999) Set-up error & organ motion uncertainty: a review. Australas Phys Eng Sci Med 22(2):29–47PubMedGoogle Scholar
  50. 50.
    Ekberg L, Holmberg O, Wittgren L, Bjelkengren G, Landberg T (1998) What margins should be added to the clinical target volume in radiotherapy treatment planning for lung cancer? Radiother Oncol 48:71–77PubMedCrossRefGoogle Scholar
  51. 51.
    Engelsman M, Damen EM, De Jaeger K, van Ingen KM, Mijnheer BJ (2001) The effect of breathing and set-up errors on the cumulative dose to a lung tumor. Radiother Oncol 60(1):95–105PubMedCrossRefGoogle Scholar
  52. 52.
    Essapen S, Knowles C, Norman A, Tait D (2002) Accuracy of set-up of thoracic radiotherapy: prospective analysis of 24 patients treated with radiotherapy for lung cancer. Br J Radiol 75(890):162–169PubMedGoogle Scholar
  53. 53.
    Halperin R, Roa W, Field M, Hanson J, Murray B (1999) Setup reproducibility in radiation therapy for lung cancer: a comparison between T-bar and expanded foam immobilization devices. Int J Radiat Oncol Biol Phys 43(1):211–216PubMedCrossRefGoogle Scholar
  54. 54.
    Hurkmans CW, Remeijer P, Lebesque JV, Mijnheer BJ (2001) Set-up verification using portal imaging; review of current clinical practice. Radiother Oncol 58(2):105–120PubMedCrossRefGoogle Scholar
  55. 55.
    Schweikard A, Glosser G, Bodduluri M, Murphy MJ, Adler JR (2000) Robotic motion compensation for respiratory movement during radiosurgery. Comput Aided Surg 5(4):263–277PubMedCrossRefGoogle Scholar
  56. 56.
    Shirato H, Shimizu S, Shimizu T, Nishioka T, Miyasaka K (1999) Real-time tumour-tracking radiotherapy. Lancet 353(9161):1331–1332PubMedCrossRefGoogle Scholar
  57. 57.
    Shirato H, Shimizu S, Kunieda T, Kitamura K, van Herk M, Kagei K, Nishioka T, Hashimoto S, Fujita K, Aoyama H, Tsuchiya K, Kudo K, Miyasaka K (2000) Physical aspects of a real-time tumor-tracking system for gated radiotherapy. Int J Radiat Oncol Biol Phys 48(4):1187–1195PubMedCrossRefGoogle Scholar
  58. 58.
    Vedam SS, Keall PJ, Todor DA, Docef A, Kini VR, Mohan R (2004) Predicting respiratory motion for four-dimensional radiotherapy. Med Phys 31:2274PubMedCrossRefGoogle Scholar
  59. 59.
    Sharp GC, Jiang SB, Shimizu S, Shirato H (2004) Prediction of respiratory tumour motion for real-time image-guided radiotherapy. Phys Med Biol 49(3):425–440PubMedCrossRefGoogle Scholar
  60. 60.
    LoSasso T, Chui CS, Ling CC (1998) Physical and dosimetric aspects of a multileaf collimation system used in the dynamic mode for implementing intensity modulated radiotherapy. Med Phys 25(10):1919–1927PubMedCrossRefGoogle Scholar
  61. 61.
    Chui CS, Spirou S, Lo Sasso T (1996) Testing of dynamic multileaf collimation. Med Phys 23(5):635–641PubMedCrossRefGoogle Scholar
  62. 62.
    Litzenberg DW, Moran JM, Fraass BA (2002) Incorporation of realistic delivery limitations into dynamic MLC treatment delivery. Med Phys 29(5):810–820PubMedCrossRefGoogle Scholar
  63. 63.
    Papiez L (2003) The leaf sweep algorithm for an immobile and moving target as an optimal control problem in radiotherapy delivery. Math Comput Modelling 37:735–745CrossRefGoogle Scholar
  64. 64.
    Neicu T, Shirato H, Seppenwoolde Y, Jiang SB (2003) Synchronized moving aperture radiation therapy (SMART): average tumour trajectory for lung patients. Phys Med Biol 48(5):587–598PubMedCrossRefGoogle Scholar
  65. 65.
    Keall PJ, Siebers JV, Joshi S, Mohan R (2004) Monte Carlo as a four-dimensional radiotherapy treatment planning tool to account for respiratory motion. Phys Med Biol 49(16):3639–3648PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Paul J. Keall
    • 1
  1. 1.Dept. of Radiation OncologyVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations