Biological Optimization

  • Andrzej Niemierko


Dose Distribution Radiat Oncol Biol Phys Normal Tissue Complication Probability Tumor Control Probability Equivalent Uniform Dose 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hope CS, Laurie J et al. (1967) Optimization of X-ray treatment planning by computer judgement. Phys Med Biol 12(4):531–542PubMedCrossRefGoogle Scholar
  2. 2.
    Bahr GK, Kereiakes JG et al. (1968) The method of linear programming applied to radiation treatment planning. Radiology 91(4):686–693PubMedGoogle Scholar
  3. 3.
    Hodes L (1974) Semiautomatic optimization of external beam radiation treatment planning. Radiology 110(1):191–196PubMedGoogle Scholar
  4. 4.
    McDonald SC, Rubin P (1977) Optimization of external beam radiation therapy. Int J Radiat Oncol Biol Phys 2(3/4):307–317PubMedGoogle Scholar
  5. 5.
    Starkschall G (1984) A constrained least-squares optimization method for external beam radiation therapy treatment planning. Med Phys 11(5):659–665PubMedCrossRefGoogle Scholar
  6. 6.
    Powlis WD, Altschuler MD et al. (1989) Semi-automated radiotherapy treatment planning with a mathematical model to satisfy treatment goals. Int J Radiat Oncol Biol Phys 16(1):271–276PubMedGoogle Scholar
  7. 7.
    Morrill SM, Lane RG et al. (1991) Treatment planning optimization using constrained simulated annealing. Phys Med Biol 36(10):1341–1361PubMedCrossRefGoogle Scholar
  8. 8.
    Lyman JT (1985) Complication probability as assessed from dose-volume histograms. Radiat Res Suppl 8(9):S13–S19PubMedCrossRefGoogle Scholar
  9. 9.
    Lyman JT, Wolbarst AB (1987) Optimization of radiation therapy, III: A method of assessing complication probabilities from dose-volume histograms. Int J Radiat Oncol Biol Phys 13(1):103–109PubMedGoogle Scholar
  10. 10.
    Kutcher GJ, Burman C (1989) Calculation of complication probability factors for non-uniform normal tissue irradiation: the effective volumemethod [see comments]. Int J Radiat Oncol Biol Phys 16(6):1623–1630PubMedGoogle Scholar
  11. 11.
    Lyman JT, Wolbarst AB (1989) Optimization of radiation therapy, IV: A dose-volume histogram reduction algorithm. Int J Radiat Oncol Biol Phys 17(2):433–436PubMedGoogle Scholar
  12. 12.
    Niemierko A, Goitein M (1991) Calculation of normal tissue complication probability and dose-volume histogram reduction schemes for tissues with a critical element architecture. Radiother Oncol 20(3):166–176PubMedCrossRefGoogle Scholar
  13. 13.
    Kallman P, Agren A et al. (1992) Tumour and normal tissue responses to fractionated non-uniform dose delivery. Int J Radiat Biol 62(2):249–262PubMedGoogle Scholar
  14. 14.
    Lyman JT (1992) Normal tissue complication probabilities: variable dose per fraction. Int J Radiat Oncol Biol Phys 22(2):247–250PubMedGoogle Scholar
  15. 15.
    Mohan R, Mageras GS et al. (1992) Clinically relevant optimization of 3-D conformal treatments. Med Phys 19(4):933–944PubMedCrossRefGoogle Scholar
  16. 16.
    Niemierko A, Urie M et al. (1992) Optimization of 3D radiation therapy with both physical and biological end points and constraints. Int J Radiat Oncol Biol Phys 23(1):99–108PubMedGoogle Scholar
  17. 17.
    Niemierko A, Goitein M (1993) Implementation of a model for estimating tumor control probability for an inhomogeneously irradiated tumor. Radiother Oncol 29(2):140–147PubMedCrossRefGoogle Scholar
  18. 18.
    Niemierko A, Goitein M (1993) Modeling of normal tissue response to radiation: the critical volume model. Int J Radiat Oncol Biol Phys 25(1):135–145PubMedGoogle Scholar
  19. 19.
    Webb S (1993) The effect on tumour control probability of varying the setting of a multileaf collimator with respect to the planning target volume. Phys Med Biol 38(12):1923–1936PubMedCrossRefGoogle Scholar
  20. 20.
    Mohan R, Wang X et al. (1994) The potential and limitations of the inverse radiotherapy technique. Radiother Oncol 32(3):232–248PubMedCrossRefGoogle Scholar
  21. 21.
    Wang XH, Mohan R et al. (1995) Optimization of intensity-modulated 3D conformal treatment plans based on biological indices [see comments]. Radiother Oncol 37(2):140–152PubMedCrossRefGoogle Scholar
  22. 22.
    Kutcher GJ (1996) Quantitative plan evaluation: TCP/NTCP models. Frontiers Radiat Ther Oncol 29:67–80Google Scholar
  23. 23.
    Mohan R, Wang X et al. (1996) Optimization of 3-D conformal radiation treatment plans. Front Radiat Ther Oncol 29:86–103PubMedGoogle Scholar
  24. 24.
    Niemierko A (1997) Reporting and analyzing dose distributions: a concept of equivalent uniform dose. Med Phys 24(1):103–110PubMedCrossRefGoogle Scholar
  25. 25.
    Niemierko A (1998) Radiobiological models of tissue response to radiation in treatment planning systems. Tumori 84(2):140–143PubMedGoogle Scholar
  26. 26.
    Kutcher G (1990) Quantitative plan evaluation. AAPM Summer School. American Institute of Physics, J Purdy, Woodbury, NYGoogle Scholar
  27. 27.
    Wu Q, Mohan R et al. (2002) Optimization of intensity-modulated radiotherapy plans based on the equivalent uniform dose. Int J Radiat Oncol Biol Phys 52(1):224–235PubMedCrossRefGoogle Scholar
  28. 28.
    Douglas BG, Fowler JF (1976) The effect of multiple small doses of X rays on skin reactions in the mouse and a basic interpretation. Radiat Res 66(2):401–426PubMedGoogle Scholar
  29. 29.
    Thames HD (1985) An ‘incomplete-repair’ model for survival after fractionated and continuous irradiations. Int J Radiat Biol 47(3):319–339Google Scholar
  30. 30.
    Thames HD, Hendry JH (1987) Fractionation in radiotherapy. Taylor & FrancisGoogle Scholar
  31. 31.
    Hall EJ (1994) Radiobiology for the radiologist. J.B. Lippincott, PhiladelphiaGoogle Scholar
  32. 32.
    Brenner DJ, Hlatky LR et al. (1995) A convenient extension of the linear-quadratic model to include redistribution and reoxygenation. Int J Radiat Oncol Biol Phys 32(2):379–390PubMedCrossRefGoogle Scholar
  33. 33.
    Withers HR, Taylor JM et al. (1988) Treatment volume and tissue tolerance. Int J Radiat Oncol Biol Phys 14(4):751–759PubMedGoogle Scholar
  34. 34.
    Withers HR (1986) Predicting late normal tissue responses. Int J Radiat Oncol Biol Phys 12(4):693–698PubMedGoogle Scholar
  35. 35.
    Brahme A (1984) Dosimetric precision requirements in radiation therapy. Acta Radiol Oncol 23(5):379–391PubMedGoogle Scholar
  36. 36.
    Brenner DJ (1993) Dose, volume, and tumor-control predictions in radiotherapy. Int J Radiat Oncol Biol Phys 26(1):171–179PubMedGoogle Scholar
  37. 37.
    Okunieff P, Morgan D et al. (1995) Radiation dose-response of human tumors. Int J Radiat Oncol Biol Phys 32(4):1227–1237PubMedCrossRefGoogle Scholar
  38. 38.
    Terahara A, Niemierko A et al. (1999) Analysis of the relationship between tumor dose inhomogeneity and local control in patients with skull base chordoma. Int J RadiatOncol Biol Phys 45(2):351–358CrossRefGoogle Scholar
  39. 39.
    Goitein M (1985) Calculation of the uncertainty in the dose delivered during radiation therapy. Med Phys 12(5):608–612PubMedCrossRefGoogle Scholar
  40. 40.
    Zagars GK, Schultheiss TE et al. (1987) Inter-tumor heterogeneity and radiation dose-control curves. Radiother Oncol 8(4):353–361PubMedGoogle Scholar
  41. 41.
    Graffman S, Groth T et al. (1975) Cell kinetic approach to optimising dose distribution in radiation therapy. Acta Radiol Ther Phys Biol 14(1):54–62PubMedGoogle Scholar
  42. 42.
    Fisher ER, Fisher B (1969) Effects of X-irradiation on parameters of tumor growth, histology, and ultrastructure. Cancer 24(1):39–55PubMedGoogle Scholar
  43. 43.
    Jackson A, Kutcher GJ et al. (1993) Probability of radiation-induced complications for normal tissues with parallel architecture subject to non-uniform irradiation. Med Phys 20(3):613–625PubMedCrossRefGoogle Scholar
  44. 44.
    Stavreva N, Niemierko A et al. (2001) Modelling the dose-volume response of the spinal cord, based on the idea of damage to contiguous functional subunits. Int J Radiat Biol 77(6):695–702PubMedCrossRefGoogle Scholar
  45. 45.
    Schultheiss TE, Orton CG et al. (1983) Models in radiotherapy: volume effects. Med Phys 10(4):410–415PubMedCrossRefGoogle Scholar
  46. 46.
    Jackson A, Ten Haken RK et al. (1995) Analysis of clinical complication data for radiation hepatitis using a parallel architecture model. Int J Radiat Oncol Biol Phys 31(4):883–891PubMedCrossRefGoogle Scholar
  47. 47.
    Hartford AC, Niemierko A et al. (1996) Conformal irradiation of the prostate: estimating long-term rectal bleeding risk using dose-volume histograms. Int J Radiat Oncol Biol Phys 36(3):721–730PubMedCrossRefGoogle Scholar
  48. 48.
    Herbert ED (ed) (1993) Quality assessment and improvement of dose-responsemodels: some effects of study weaknesses on study findings. “c’est magnifique?” A report of Task Group 1 of the AAPM Biological Effects Committee. AAPM Report No. 43, Med Phys Pub, MadisonGoogle Scholar
  49. 49.
    Lindsey JK (1997) Applying generalized linear models. Springer, Berlin Heidelberg New YorkGoogle Scholar
  50. 50.
    Burman C, Kutcher GJ et al. (1991) Fitting of normal tissue tolerance data to an analytic function. Int J Radiat Oncol Biol Phys 21(1):123–135PubMedGoogle Scholar
  51. 51.
    Emami B, Lyman J et al. (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21(1):109–122PubMedGoogle Scholar
  52. 52.
    Mohan R, Niemierko A (2002). Intensity modulated radiation therapy. ASTRO Syllabus, New OrleansGoogle Scholar
  53. 53.
    Kutcher GJ et al. (1991) Histogram reduction method for calculating complication probabilities for three-dimensional treatment planning evaluations. Int J Radiat Oncol Biol, Phys 21(1):137–146Google Scholar
  54. 54.
    Brahme A (1996) Recent developments in radiation therapy planning and treatment optimization. Australas Phys Eng Sci Med 19(2):53–66PubMedGoogle Scholar
  55. 55.
    Barendsen GW (1982) Dose fractionation, dose rate and isoeffect relationships for normal tissue responses. Int J Radiat Oncol Biol Phys 8(11):1981–1997PubMedGoogle Scholar
  56. 56.
    Niemierko A (1999) A generalized concept of Equivalent Uniform Dose. Proceedings of the 41th AAPM Annual Meeting, Nashville, Tennessee. Med Phys 26(6):1100Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Andrzej Niemierko
    • 1
  1. 1.Dept. of Radiation OncologyMassachusetts General HospitalBostonUSA

Personalised recommendations