Advertisement

PET and SPECT in IMRT: Future Prospects

  • Christophe Van de Wiele

Keywords

Positron Emission Tomography Radiat Oncol Biol Phys IMRT Planning Radiolabeled Amino Acid Neutral Amino Acid Transport System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eberl S, Zimmerman RE (1998) Nuclear medicine imaging instrumentation. In: Muray IPC, Ell PJ (eds) Nuclear medicine in clinical diagnosis and treatment. Churchill Livingstone, Edinburgh, pp 1559–1569Google Scholar
  2. 2.
    Bailey DL, Parker JA (1998) Single photon emission computed tomography. In: Muray IPC, Ell PJ (eds) Nuclear medicine in clinical diagnosis and treatment. Churchill Livingstone, Edinburgh, pp 1589–1601Google Scholar
  3. 3.
    Meikle SR, Dahlbom M (1998) Positron emission tomography. In: Muray IPC, Ell PJ (eds) Nuclear medicine in clinical diagnosis and treatment. Churchill Livingstone, Edinburgh, pp 1603–1616Google Scholar
  4. 4.
    Boyd RE, Silvester DJ (1998) Radioisotope production. In: Muray IPC, Ell PJ (eds) Nuclear medicine in clinical diagnosis and treatment. Churchill Livingstone, Edinburgh, pp 1617–1624Google Scholar
  5. 5.
    Jones T (1996) The imaging science of positron emission tomography. Eur J Nucl Med 23:807–813PubMedCrossRefGoogle Scholar
  6. 6.
    Som P, Atkins HL, Bandoypadhyay D et al. (1980) A fluorinated glucose analogue, 2-fluoro-2-deoxy-D-glucose (F-18): non-toxic tracer for rapid tumour detection. J Nucl Med 21:670–675PubMedGoogle Scholar
  7. 7.
    Warburg O (1956) On the origin of cancer cells. Science 123:309–314PubMedGoogle Scholar
  8. 8.
    Flier JS, Mueckler MM, Usher P, Lodish HF (1987) Elevated levels of glucose transport and transporter messenger RNA are induced by ras or src oncogenes. Science 235:1492–1495PubMedGoogle Scholar
  9. 9.
    Weber WA, Avril N, Schwaiger M (1999) Relevance of positron emission tomography (PET) in oncology. Stralenther Onkol 175:356–373CrossRefGoogle Scholar
  10. 10.
    Dahlbom M, Hoffman E, Hoh CK, Schiepers C, Rosenqvist G, Hawkins RA, Phelps ME (1992) Whole-body positron emission tomography: part I. Methods and performance characteristics. J Nucl Med 33:1191–1199PubMedGoogle Scholar
  11. 11.
    Strauss LG (1996) Fluorine-18 deoxyglucose and false-positive results: a major problem in the diagnostics of oncological patients. Eur J Nucl Med 23:1409–1415PubMedCrossRefGoogle Scholar
  12. 12.
    Mutic S, Malyapa RS, Grigsby PW et al. (2003) PET-guided IMRT for cervical carcinoma with positive para-aortic lymph nodes-a dose-escalation treatment planning study. Int J Radiat Oncol Biol Phys 55:28–35PubMedCrossRefGoogle Scholar
  13. 13.
    Grills IS, Yan D, Martinez AA, Vicini FA, Wong JW, Kestin LL (2003) Potential for reduced toxicity and dose escalation in the treatment of inoperable non-small-cell lung cancer: a comparison of intensity-modulated radiation therapy (IMRT), 3D conformal radiation, and elective nodal irradiation. Int J Radiat Oncol Biol Phys 57:875–890PubMedCrossRefGoogle Scholar
  14. 14.
    Scarfone C, Lavely WC, Cmelak AJ, Delbeke D, Martin WH, Billheimer D, Hallahan DE (2004) Prospective feasibility trial of radiotherapy target definition for head and neck cancer using 3-dimensional PET and CT imaging. J Nucl Med 45:543–552PubMedGoogle Scholar
  15. 15.
    Mendelsohn ML (1960) The growth fraction: a new concept applied to tumours. Science 132:1496–1503Google Scholar
  16. 16.
    Slingerland JM, Tannock IF (1987) Cell proliferation and cell death. In: Tannock IF, Hill RP (eds) The basic science of oncology, 3rd edn. McGraw-Hill, New York, pp 134–165Google Scholar
  17. 17.
    Van de Wiele C, De Bondt P, Peeters M, Vermeersch H, Dierckx RA (2002) Radiolabelled thymidines and deoxyuridines for measuring cellular proliferation in tumours — an update. Nucl Med Commun 23:925–931PubMedCrossRefGoogle Scholar
  18. 18.
    Souba WW, Pacitti AJ (1992) How amino acids get into cells: mechanisms, models, menus and mediators. J Parenter Enteral Nutr 16:569–578CrossRefGoogle Scholar
  19. 19.
    Christensen HN (1990) Role of amino acid transport and countertransport in nutrition and metabolism. Phys Rev 70:43–77Google Scholar
  20. 20.
    Oxender DL, Christensen HN (1963) Distinct mediating systems for the transport of neutral amino acids by the Ehrlich cell. J Biol Chem 238:3686–3699PubMedGoogle Scholar
  21. 21.
    Shotwell A, Jayme DW, Killberg M et al. (1981) Neutral amino acid transport systems in Chinese hamster ovary cells. J Biol Chem 256:5422–5427PubMedGoogle Scholar
  22. 22.
    Isselbacher KJ (1972) Sugar and amino acid transport by cells in culture: differences between normal and malignant cells. N Engl J Med 286:929–933PubMedCrossRefGoogle Scholar
  23. 23.
    Busch H, Davis JR, Honig GR et al. (1959) The uptake of a variety of amino acids into nuclear proteins of tumors and other tissues. Cancer Res 19:1030–1039PubMedGoogle Scholar
  24. 24.
    Argiles JM, Costelli P, Carbo N et al. (1999) Tumour growth and nitrogen metabolism in the host. Int J Oncol 14:479–486PubMedGoogle Scholar
  25. 25.
    Souba WW (1993) Glutamine and cancer. Ann Surg 218:715–728PubMedGoogle Scholar
  26. 26.
    Kubato K, Yamada S, Kubota R et al. (1992) Intratumoral distribution of fluorine-18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med 33:1972–1980Google Scholar
  27. 27.
    Kubota R, Kubota K, Yamada S et al. (1995) Methionine uptake by tumor tissue: a microautoradiographic comparison with FDG. J Nucl Med 36:484–492PubMedGoogle Scholar
  28. 28.
    Kubota K, Matsuzawa T, Fujiwara T et al. (1989) Differential Diagnosis of AH109A tumor and inflammation by radioscintigraphy with L-[methyl-11C]-methionine. Jpn J Cancer Res 80:778–782PubMedGoogle Scholar
  29. 29.
    Fyles AW, Milosevic M, Wong R et al. (1998) Oxygenation predicts radiation response and survival inpatients with cervix cancer. Radiother Oncol 48:149–156PubMedCrossRefGoogle Scholar
  30. 30.
    Hockel M, Schlenger K, Hockel S, Vaupel P (1999) Association between tumor hypoxia and malignant progression: the clinical evidence in cancer of the uterine cervix. In: Vaupel P, Kelleher DK (eds) Tumour hypoxia. Wissenschaftliche Verlagsgesellschaft mbH., Stuttgart, pp 65–74Google Scholar
  31. 31.
    Nordsmark M, Overgaard M, Overgaard J (1996) Pretreatment oxygenation predicts radiation response in advanced squamous cell carcinoma of the head and neck. Radiother Oncol 41:31–39PubMedGoogle Scholar
  32. 32.
    Koh WJ, Rasey JS, Evans ML et al. (1992) Imaging of hypoxia in human tumors with (F-18)fluoromisonidazole. Int J Radiat Oncol Biol Phys 22(1):199–212PubMedGoogle Scholar
  33. 33.
    Koh WJ, Bergman KS, Rasey JS et al. (1995) Evaluation of oxygenation status during fractionated radiotherapy in human non-small cell lung cancers using (F-18)fluoromisonidazole positron emission tomography. Int J Radiat Oncol Biol Phys 33(2):391–398PubMedCrossRefGoogle Scholar
  34. 34.
    Rasey JS, Koh WJ, Evans ML et al. (1996) Quantifying regional hypoxia in human tumors with positron emission tomography of (F-18)fluoromisonidazole: a pretherapy study of 37 patients. Int J Radiat Oncol Biol Phys 36(2):417–428PubMedCrossRefGoogle Scholar
  35. 35.
    Parliament MB, Chapman JD, Urtasun RC et al. (1992) Non-invasive assessment of human tumour hypoxia with 123I-iodoazomycin arabinoside: preliminary report of a clinical study. Br J Cancer 65:90–95PubMedGoogle Scholar
  36. 36.
    Urtasun RC, Parliament MB, McEwan AJ et al. (1996) Measurement of hypoxia in human tumors by non-invasive spect imaging of iodoazomycin arabinoside. Br J Cancer 74:S209–S212Google Scholar
  37. 37.
    Groshar D, McEwan AJB, Parliament MB et al. (1993) Imaging tumor hypoxia and tumor perfusion. J Nucl Med 34:885–888PubMedGoogle Scholar
  38. 38.
    Cook GJR, Houston S, Barrington SF, Fogelman I (1998) Technetium-99m-labeled HL91 to identify tumor hypoxia: correlation with Fluorine-18-FDG. J Nucl Med 103:39–99Google Scholar
  39. 39.
    Van de Wiele C, Versijpt J, Dierckx RA, Moerman M, Lemmerling M, D’Asseler Y, Vermeersch H (2001) Technetium-99m-labelled HL91 versus CT and biopsy for the visualization of tumour recurrence of squamous head and neck carcinoma. Nucl Med Commun 22:269–275CrossRefGoogle Scholar
  40. 40.
    Takahashi N, Fujibayashi Y, Yonekura Y et al. (2000) Evaluation of Cu-62 labeled diacetyl-bis(N-4-methoylthiosemicarbazone) as a hypoxic tissue tracer inpatients with lung cancer. Ann Nucl Med 14(5):323–328PubMedCrossRefGoogle Scholar
  41. 41.
    Siim BG, Laux WT, Rutland MD, Palmer BN, Wilson WR (2000) Scintigraphic imaging of the hypoxia marker (99m)technetium-labelled 2, 2′-(1,4-diaminobutane)-bis(2-methyl-3-butanone)dioxime (Tc-99m-labeled HL-91; Prognox): Noninvasive detection of tumor response to the antivascular agent 5.6-dimethylxanthenone-4-acetic acid. Cancer Res 60(16):4582–4588PubMedGoogle Scholar
  42. 42.
    Chao KS, Bosch WR, Mutic S et al. (2001) A novel approach to overcome hypoxic tumor resistance: Cu-ATSM-guided intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 49(4):1171–1182PubMedCrossRefGoogle Scholar
  43. 43.
    van Engeland M, Nieland LJW, Ramaekers FCS et al. (1998) Annexin-V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry 31:1–9PubMedCrossRefGoogle Scholar
  44. 44.
    Narula J, Acio ER, Narula N et al. (2001) Annexin-V imaging for noninvasive detection of cardiac allograft rejection. Nature Med 7:1347–1352PubMedCrossRefGoogle Scholar
  45. 45.
    Hofstra L, Liem IH, Dumont EA et al. (2000) Visualisation of cell death in vivo in patients with acute myocardial infarction. Lancet 356:209–212PubMedCrossRefGoogle Scholar
  46. 46.
    Blankenberg FG, Vriens PW, Tait JF et al. (1998) Non-invasive Detection and quantification of acute heart transplant rejection using 99mTc radiolabeled annexin V (Abstr). Radiology 1337Google Scholar
  47. 47.
    Narula J, Acia ER, Narula N et al. (2000) Phase-I Tc99m-Annexin-V imaging study in heart transplant rejection: can noninvasive detection of apoptosis in cardiac allografts obviate the need for endomyocardial biopsy (Abstr). Circulation 102:3714Google Scholar
  48. 48.
    Harari PM, Huang SM (2004) Combining EGFR inhibitors with radiation or chemotherapy: will preclinical studies predict clinical results? Int J Radiat Oncol Biol Phys 58:976–983PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Christophe Van de Wiele
    • 1
  1. 1.Dept. of Nuclear MedicineUniversity Hospital GhentGhentBelgium

Personalised recommendations