Skip to main content

Nitric Oxide

  • Conference paper

Part of the Update in Intensive Care and Emergency Medicine book series (UICMSOFT,volume 44)

Conclusion

Over the last ten years or so, a role of NO in sepsis and MOF has been established. A number of studies have been performed in animals and in patients in which the generation of NO in sepsis has been pharmacologically manipulated. While improvements in hemodynamics have generally been reported, to date none of these investigations has clearly demonstrated improved organ function or outcomes in human sepsis.

It is becoming increasingly clear that NO mediates both cytoprotective and cytopathic roles in sepsis. However, much remains to be elucidated in terms of how NO mediates these effects and also whether the consequences of NO are causative or reactive to organ dysfunction. Future therapies, better targeted towards selectively inhibiting iNOS, will no doubt help to clarify this question. In addition, it is possible that targeting downstream effects of NO, such as mitochondrial dysfunction or promoting mitochondrial biogenesis, may emerge as possible approaches to the management of this complex and widespread condition.

Keywords

  • Nitric Oxide
  • Septic Shock
  • Methylene Blue
  • Mitochondrial Biogenesis
  • Vasodilatory Shock

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weycker D, Akhras KS, Edelsberg JMD, Angus DCM, Oster G (2003) Long-term mortality and medical care charges in patients with severe sepsis. Crit Care Med 31:2316–2323

    CrossRef  PubMed  Google Scholar 

  2. Hegash E, Shiloah J (1982) Blood nitrates and infantile methemoglobinemia. Clin Chim Acta 125:107–115

    CrossRef  Google Scholar 

  3. Wagner DA, Young VR, Tannenbaum SR (1983) Mammalian nitrate biosynthesis: incorporation of 15NH3 into nitrate is enhanced by endotoxin treatment. Proc Natl Acad Sci USA 80:4518–4521

    CrossRef  PubMed  CAS  Google Scholar 

  4. Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376

    CrossRef  PubMed  CAS  Google Scholar 

  5. Palmer RMJ, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526

    CrossRef  PubMed  CAS  Google Scholar 

  6. Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 84:9265–9269

    CrossRef  PubMed  CAS  Google Scholar 

  7. Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142

    PubMed  CAS  Google Scholar 

  8. Lopez A, Lorente JA, Steingrub J, et al (2004) Multiple-center, randomized, placebo-controlled, double-blind study of the nitric oxide synthase inhibitor 546C88: Effect on survival in patients with septic shock. Crit Care Med 32:21–30

    CrossRef  PubMed  CAS  Google Scholar 

  9. Brown GC, Cooper C (1994) Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase. FEBS Lett 356:295–298

    CrossRef  PubMed  CAS  Google Scholar 

  10. Cleeter MWJ, Cooper JM, Darley-Usmar VM, Moncada S, Schapira AHV (1994) Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide: Implications for neurodegenerative diseases. FEBS Lett 345:50–54

    CrossRef  PubMed  CAS  Google Scholar 

  11. Schweizer M, Richter C (1994) Nitric oxide potently and reversibly deenergizes mitochondria at low oxygen tension. Bioch Biophys Res Comm 204:169–175

    CrossRef  CAS  Google Scholar 

  12. Assreuy J, Cunha FQ, Liew FY, Moncada S (1993) Feedback inhibition of nitric oxide synthase activity by nitric oxide. Br J Pharmacol 108:833–837

    PubMed  CAS  Google Scholar 

  13. Hughes MN (1999) Relationships between nitric oxide, nitroxyl ion, nitrosonium cation and peroxynitrite. Biochim Biophys Acta 1411:263–272

    CrossRef  PubMed  CAS  Google Scholar 

  14. Beltran B, Orsi A, Clementi E, Moncada S (2000) Oxidative stress and S-nitrosylation of proteins in cells. Br J Pharmacol 129:953–960

    CrossRef  PubMed  CAS  Google Scholar 

  15. Brown GC, Borutaite V (2002) Nitric oxide inhibition of mitochondrial respiration and its role in cell death. Free Rad Biol Med 33:1440–1450

    CrossRef  PubMed  CAS  Google Scholar 

  16. Feihl F, Waeber B, Liaudet L (2001) Is nitric oxide overproduction the target of choice for the management of septic shock? Pharmacol Therap 91:179–213

    CrossRef  CAS  Google Scholar 

  17. Hogg N, Kalyanaraman B (1999) Nitric oxide and lipid peroxidation. Biochim Biophys Acta 1411:378–384

    CrossRef  PubMed  CAS  Google Scholar 

  18. Murphy MP (1999) Nitric oxide and cell death. Biochim Biophys Acta 1411:401–414

    CrossRef  PubMed  CAS  Google Scholar 

  19. Ghafourifar P, Richter C (1997) Nitric oxide synthase activity in mitochondria. FEBS Lett 418:291–296

    CrossRef  PubMed  CAS  Google Scholar 

  20. Giulivi C, Poderoso JJ, Boveris A (1998) Production of NO by mitochondria. J Biol Chem 273:11038–11043

    CrossRef  PubMed  CAS  Google Scholar 

  21. Stuehr DJ (1999) Mammalian nitric oxide synthases. Biochim Biophys Acta 1411:217–230

    CrossRef  PubMed  CAS  Google Scholar 

  22. Dudzinski DM, Igarashi J, Greif D, Michel TM (2006) The regulation and pharmacology of endothelial nitric oxide synthases. Ann Rev Pharmacol Toxicol 46:235–276

    CrossRef  CAS  Google Scholar 

  23. Brown GC (1999) Nitric oxide and mitochondrial respiration. Biochim Biophys Acta 1411:351–369

    CrossRef  PubMed  CAS  Google Scholar 

  24. Stuehr DJ, Santolini J, Wang ZQ, Wei CC, Adak S (2004) Update on mechanism and catalytic regulation in the NO synthases. J Biol Chem 279:36167–36170

    CrossRef  PubMed  CAS  Google Scholar 

  25. Moncada S, Higgs AE (2006) The discovery of nitric oxide and its role in vascular biology. Br J Pharmacol 147:S193–S201

    CrossRef  PubMed  CAS  Google Scholar 

  26. Cavaillon JM, Adib-Conquy M (2005) Monocytes/macrophages and sepsis. Crit Care Med 33:S504–S509

    CrossRef  Google Scholar 

  27. Titheradge MA (1999) Nitric oxide in septic shock. Biochim Biophys Acta 1411:437–455

    CrossRef  PubMed  CAS  Google Scholar 

  28. Radomski MW, Palmer RMJ, Moncada S (1990) Glucocorticoids inhibit the expression of an inducible, but not the constitutive, nitric oxide synthase in vascular endothelial cells. Proc Natl Acad Sci USA 87:10043–10047

    CrossRef  PubMed  CAS  Google Scholar 

  29. Connelly L, Jacobs AT, Palacios-Callender M, Moncada S, Hobbs AJ (2003) Macrophage endothelial nitric-oxide synthase autoregulates cellular activation and pro-inflammatory protein expression. J Biol Chem 278:26480–26487

    CrossRef  PubMed  CAS  Google Scholar 

  30. Moncada S, Erusalimsky JD (2002) Does nitric oxide modulate mitochondrial energy generation and apoptosis? Nat Rev Mol Cell Biol 3:214–220

    CrossRef  PubMed  CAS  Google Scholar 

  31. Brown GC (2001) Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase. Biochim Biophys Acta 1504:46–57

    CrossRef  PubMed  CAS  Google Scholar 

  32. Palacios-Callender M, Quintero M, Hollis VS, Springett RJ, Moncada S (2004) Endogenous NO regulates superoxide production at low oxygen concentrations by modifying the redox state of cytochrome c oxidase. Proc Natl Acad Sci USA 101:7630–7635

    CrossRef  PubMed  CAS  Google Scholar 

  33. Duchen MR (2004) Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol Aspects Med 25:365–451

    PubMed  CAS  Google Scholar 

  34. Almeida A, Almeida J, Bolanos JP, Moncada S (2001) Different responses of astrocytes and neurons to nitric oxide: The role of glycolytically generated ATP in astrocyte protection. Proc Natl Acad Sci USA 98:15294–15299

    CrossRef  PubMed  CAS  Google Scholar 

  35. Nisoli E, Clementi E, Paolucci C, et al (2003) Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science 299:896–899

    CrossRef  PubMed  CAS  Google Scholar 

  36. Strand OA, Leone A, Giercksky KE, Kirkeboen KA (2000) Nitric oxide indices in human septic shock. Crit Care Med 28:2779–2785

    CrossRef  PubMed  CAS  Google Scholar 

  37. Annane D, Sanquer S, Sebille V, et al (2000) Compartmentalised inducible nitric-oxide synthase activity in septic shock. Lancet 355:1143–1148

    CrossRef  PubMed  CAS  Google Scholar 

  38. Arnalich F, Hernanz A, Jimenez M, et al (1996) Relationship between circulating levels of calcitonin gene-related peptide, nitric oxide metabolites and hemodynamic changes in human septic shock. Reg Peptides 65:115–121

    CrossRef  CAS  Google Scholar 

  39. Evans T, Carpenter A, Kinderman H, Cohen J (1993) Evidence of increased nitric oxide production in patients with the sepsis syndrome. Circ Shock 41:77–81

    PubMed  CAS  Google Scholar 

  40. Gomez-Jimenez J, Salgado A, Mourelle M, et al (1995) L-arginine: Nitric oxide pathway in endotoxemia and human septic shock. Crit Care Med 23:253–258

    CrossRef  PubMed  CAS  Google Scholar 

  41. Ochoa JB, Udekwu AO, Billiar TR, et al (1991) Nitrogen oxide levels in patients after trauma and during sepsis. Ann Surg 214:621–626

    PubMed  CAS  Google Scholar 

  42. Brealey D, Brand M, Hargreaves I, et al (2002) Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 360:219–223

    CrossRef  PubMed  CAS  Google Scholar 

  43. Hayashi Y, Abe M, Murai A, et al (2005) Comparison of effects of nitric oxide synthase (NOS) inhibitors on nitrite/nitrate levels and tissue NOS activity in septic organs. Microbiol Immunol 49:139–147

    PubMed  CAS  Google Scholar 

  44. MacNaul K, Hutchinson N (1993) Differential expression of iNOS and cNOS mRNAin human vascular smooth muscle and endothelial cells under normal and inflammatory conditions. Bioch Biophys Res Comm 196:1330–1334

    CrossRef  CAS  Google Scholar 

  45. Lanone S, Mebazaa A, Heymes C, et al (2001) Sepsis is associated with reciprocal expressional modifications of constitutive nitric oxide synthase (NOS) in human skeletal muscle: Downregulation of NOS1 and up-regulation of NOS3. Crit Care Med 29:1720–1725

    CrossRef  PubMed  CAS  Google Scholar 

  46. Sharshar T, Gray F, de la Grandmaison GL, et al (2003) Apoptosis of neurons in cardiovascular autonomic centres triggered by inducible nitric oxide synthase after death from septic shock. Lancet 362:1799–1805

    CrossRef  PubMed  CAS  Google Scholar 

  47. Landry DW, Oliver JA (2001) The pathogenesis of vasodilatory shock. N Engl JMed 345:588–595

    CrossRef  CAS  Google Scholar 

  48. Kumar A, Krieger A, Symeoneides S, Kumar A, Parrillo JE (2001) Myocardial dysfunction in septic shock: Part II. Role of cytokines and nitric oxide. J Cardiothor Vasc Anesth 15:485–511

    CrossRef  CAS  Google Scholar 

  49. Schulz R, Nava E, Moncada S (1992) Induction and potential biological relevance of a Ca2+-independent nitric oxide synthase in the myocardium. Br J Pharmacol 105:575–580

    PubMed  CAS  Google Scholar 

  50. Brady AJ, Poole-Wilson PA, Harding SE, Warren JB (1992) Nitric oxide production within cardiacmyocytes reduces their contractility in endotoxemia. AmJ Physiol 263:H1963–H1966

    CAS  Google Scholar 

  51. Price S, Mitchell JA, Anning PB, Evans TW (2003) Type II nitric oxide synthase activity is cardio-protective in experimental sepsis. Eur J Pharmacol 472:111–118

    CrossRef  PubMed  CAS  Google Scholar 

  52. Singer M, Brealey D (1999) Mitochondrial dysfunction in sepsis. Biochem Soc Symp 66:149–166

    PubMed  CAS  Google Scholar 

  53. De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL (2002) Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 166:98–104

    CrossRef  PubMed  Google Scholar 

  54. Hayes MA, Timmins AC, Yau E, Palazzo M, Hinds CJ, Watson D (1994) Elevation of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med 330:1717–1722

    CrossRef  PubMed  CAS  Google Scholar 

  55. Gattinoni L, Brazzi L, Pelosi P, et al (1995) A trial of goal-oriented hemodynamic therapy in critically ill patients. N Engl J Med 333:1025–1032

    CrossRef  PubMed  CAS  Google Scholar 

  56. Hayes MA, Timmins AC, Yau EH, Palazzo M, Watson D, Hinds CJ (1997) Oxygen transport patterns in patients with sepsis syndrome or septic shock: influence of treatment and relationship to outcome. Crit Care Med 25:926–936

    CrossRef  PubMed  CAS  Google Scholar 

  57. Crouser ED (2004) Mitochondrial dysfunction in septic shock and multiple organ failure. Mitochondrion 4:729–741

    CrossRef  PubMed  CAS  Google Scholar 

  58. Brealey D, Karyampudi S, Jacques TS, et al (2004) Mitochondrial dysfunction in a long-term rodent model of sepsis and organ failure. Am J Physiol 286:R491–R497

    CAS  Google Scholar 

  59. Borutaite V, Matthias A, Harris H, Moncada S, Brown GC (2001) Reversible inhibition of cellular respiration by nitric oxide in vascular inflammation. Am J Physiol 281:H2256–H2260

    CAS  Google Scholar 

  60. Orsi A, Rees DD, Beltran B, Moncada S (2000) Physiological regulation and pathological inhibition of tissue respiration by nitric oxide in vivo. In:Moncada S, Gustafsson LE, Wiklund NP, Higgs EA (eds) The Biology of Nitric Oxide, Part 7. Portland Press, London, pp: 35

    Google Scholar 

  61. Singer M, De Santis V, Vitale D, Jeffcoate W (2004) Multiorgan failure is an adaptive, endocrine-mediated, metabolic response to overwhelming systemic inflammation. Lancet 364:545–548

    CrossRef  PubMed  Google Scholar 

  62. Mander P, Borutaite V, Moncada S, Brown GC (2005) Nitric oxide from inflammatory-activated glia synergizes with hypoxia to induce neuronal death. J Neurosci Res 79:208–215

    CrossRef  PubMed  CAS  Google Scholar 

  63. Borutaite V, Moncada S, Brown GC (2005) Nitric oxide from inducible nitric oxide synthase sensitizes the inflamed aorta to hypoxic damage via respiratory inhibition. Shock 23:319–323

    CrossRef  PubMed  CAS  Google Scholar 

  64. Frost MT, Wang Q, Moncada S, Singer M (2005) Hypoxia accelerates nitric oxide-dependent inhibition of mitochondrial complex I in activated macrophages. Am J Physiol 288:R394–R400

    CAS  Google Scholar 

  65. Hotchkiss RS, Swanson PE, Freeman BD, et al (1999) Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Crit Care Med 27:1230–1251

    CrossRef  PubMed  CAS  Google Scholar 

  66. Perl M, Chung CS, Ayala A (2005) Apoptosis. Crit Care Med 33(Suppl):S526–S529

    CrossRef  PubMed  Google Scholar 

  67. Minneci PC, Deans KJ, Banks SM, Eichacker PQ, Natanson C (2004) Dose-dependent effects of steroids on survival rates and shock during sepsis: a meta-analysis. Ann Intern Med 141:47–56

    PubMed  CAS  Google Scholar 

  68. Alderton WK, Angell ADR, Craig C, et al (2005) GW274150 and GW273629 are potent and highly selective inhibitors of inducible nitric oxide synthase in vitro and in vivo. Br J Pharmacol 145:301–312

    CrossRef  PubMed  CAS  Google Scholar 

  69. Lorente JA, Landin L, Renes E, et al (1993) L-arginine pathway in the sepsis syndrome. Crit Care Med 21:759–767

    CrossRef  PubMed  CAS  Google Scholar 

  70. Petros A, Lamb G, Leone A (1994) Effects of a nitric oxide synthase inhibitor in humans with septic shock. Cardiovasc Res 28:34–39

    CrossRef  PubMed  CAS  Google Scholar 

  71. Avontuur JAMM, Nolthenius RPT, van Bodegom JWM, Bruining HAM (1998) Prolonged inhibition of nitric oxide synthesis in severe septic shock: A clinical study. Crit Care Med 26:660–667

    CrossRef  PubMed  CAS  Google Scholar 

  72. Bakker JMD, Grover R, McLuckie A, et al (2004) Administration of the nitric oxide synthase inhibitor NG-methyl-L-arginine hydrochloride (546C88) by intravenous infusion for up to 72 hours can promote the resolution of shock in patients with severe sepsis: Results of a randomized, double-blind, placebo-controlled multicenter study. Crit Care Med 32:1–12

    CrossRef  PubMed  CAS  Google Scholar 

  73. Watson D, Grover R, Anzueto A, et al (2004) Cardiovascular effects of the nitric oxide synthase inhibitor NG-methyl-L-arginine hydrochloride (546C88) in patients with septic shock: Results of a randomized, double-blind, placebo-controlled multicenter study. Crit Care Med 32:13–20

    CrossRef  PubMed  CAS  Google Scholar 

  74. Schneider F, Lutun P, Hasselmann M, et al (1992) Methylene blue increases systemic vascular resistance in human septic shock. Intensive Care Med 18:309–311

    CrossRef  PubMed  CAS  Google Scholar 

  75. Kirov M, Evgenov O, Evgenov N, et al (2001) Infusion of methylene blue in human septic shock: A pilot, randomized, controlled study. Crit Care Med 29:1860–1867

    CrossRef  PubMed  CAS  Google Scholar 

  76. Zingarelli B, Hasko G, Salzman A, Szabo C (1999) Effects of a novel guanylyl cyclase inhibitor on the vascular actions of nitric oxide and peroxynitrite in immunostimulated smooth muscle cells and in endotoxic shock. Crit Care Med 27:1701–1707

    CrossRef  PubMed  CAS  Google Scholar 

  77. Zacharowski K, Berkels R, Olbrich A, et al (2001) The selective guanylate cyclase inhibitor ODQ reduces multiple organ injury in rodent models of Gram-positive and Gram-negative shock. Crit Care Med 29:1599–1608

    CrossRef  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Carré, J., Singer, M., Moncada, S. (2007). Nitric Oxide. In: Abraham, E., Singer, M. (eds) Mechanisms of Sepsis-Induced Organ Dysfunction and Recovery. Update in Intensive Care and Emergency Medicine, vol 44. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-30328-6_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-30328-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30157-8

  • Online ISBN: 978-3-540-30328-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics