Skip to main content

The Significance of HMGB1, a Late-Acting Pro-inflammatory Cytokine

  • Conference paper
  • 1145 Accesses

Part of the Update in Intensive Care and Emergency Medicine book series (UICMSOFT,volume 44)

Conclusion

HMGB1 is a novel late mediator of inflammatory responses that contributes to ALI and lethal sepsis. It appears to interact with at least three receptors, including RAGE, TLR2, and TLR4, potentially explaining the similarities in cellular activation induced by HMGB1 and bacterial products, such as LPS or peptidoglycan. However, the multiple receptors involved in HMGB1 signaling also provide insights into the differences in gene expression produced by cellular interaction with this mediator. Unlike the situation with classically described pro-inflammatory cytokines, such as TNF-α or IL-1β, where blockade is only effective in improving outcome from experimental sepsis if administered before or very early in the course of sepsis, inhibition of HMGB1 with specific antibodies or the HMGB1 A box sequence still reduces mortality even if performed up to 24 hours after the initiation of the septic insult. Such findings suggest that HMGB1 may be an appropriate therapeutic target in patients with sepsis or ALI, since it may participate in the pathogenesis of organ dysfunction and mortality even at later time points when such patients present for hospital or ICU admission.

Keywords

  • Acute Lung Injury
  • Ethyl Pyruvate
  • Late Mediator
  • Postinjury Multiple Organ Failure

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moore FA, Moore EE, Sauaia A (1997) Blood transfusion. An independent risk factor for postinjury multiple organ failure. Arch Surg 132:620–624

    PubMed  CAS  Google Scholar 

  2. Sauaia A, Moore FA, Moore EE, et al (1994) Early predictors of postinjury multiple organ failure. Arch Surg 129:39–45

    PubMed  CAS  Google Scholar 

  3. Sauaia A, Moore FA, Moore EE, Lezotte DC (1996) Early risk factors for postinjury multiple organ failure. World J Surg 20:392–400

    CrossRef  PubMed  CAS  Google Scholar 

  4. Sauaia A, Moore FA, Moore EE, et al (1998) Multiple organ failure can be predicted as early as 12 hours after injury. J Trauma 45:291–301

    CrossRef  PubMed  CAS  Google Scholar 

  5. Abraham E, Allbee J (1994) Effects of therapy with interleukin-1 receptor antagonist on pulmonary cytokine expression following hemorrhage and resuscitation. Lymphokine Cytokine Res 13:343–347

    PubMed  CAS  Google Scholar 

  6. Abraham E, Coulson WF, Schwartz MD, Allbee J (1994) Effects of therapywith soluble tumour necrosis factor receptor fusion protein on pulmonary cytokine expression and lung injury following haemorrhage and resuscitation. Clin Exp Immunol 98:29–34

    CrossRef  PubMed  CAS  Google Scholar 

  7. Abraham E, Jesmok G, Tuder R, et al (1995) Contribution of tumor necrosis factor-alpha to pulmonary cytokine expression and lung injury after hemorrhage and resuscitation. Crit Care Med 23:1319–1326

    CrossRef  PubMed  CAS  Google Scholar 

  8. Andersson U, Erlandsson-Harris H, Yang H, Tracey KJ (2002) HMGB1 as a DNA-binding cytokine. J Leukoc Biol 72:1084–1091

    PubMed  CAS  Google Scholar 

  9. Czura CJ, Tracey KJ (2003) Targeting high mobility group box 1 as a late-acting mediator of inflammation. Crit Care Med 31:S46–50

    CrossRef  PubMed  CAS  Google Scholar 

  10. Czura CJ, Wang H, Tracey KJ (2001) Dual roles for HMGB1: DNA binding and cytokine. J Endotoxin Res 7:315–321

    CrossRef  PubMed  CAS  Google Scholar 

  11. Ulloa L, Ochani M, Yang H, et al (2002) Ethyl pyruvate prevents lethality in mice with established lethal sepsis and systemic inflammation. Proc Natl Acad Sci USA 99:12351–12356

    CrossRef  PubMed  CAS  Google Scholar 

  12. Wang H, Yang H, Czura CJ, et al (2001) HMGB1 as a late mediator of lethal systemic inflammation. Am J Respir Crit Care Med 164:1768–1773

    PubMed  CAS  Google Scholar 

  13. Yang H, Wang H, Czura CJ, Tracey KJ (2002) HMGB1 as a cytokine and therapeutic target. J Endotoxin Res 8:469–472

    CrossRef  PubMed  CAS  Google Scholar 

  14. Chen G, Ward MF, Sama AE, Wang H (2004) Extracellular HMGB1 as a proinflammatory cytokine. J Interferon Cytokine Res 24:329–333

    CrossRef  PubMed  CAS  Google Scholar 

  15. Czura CJ, Yang H, Amella CA, Tracey KJ (2004) HMGB1 in the Immunology of Sepsis (Not Septic Shock) and Arthritis. Adv Immunol 84:181–200

    PubMed  CAS  Google Scholar 

  16. Erlandsson Harris H, Andersson U (2004) Mini-review: The nuclear protein HMGB1 as a proinflammatory mediator. Eur J Immunol 34:1503–1512

    CrossRef  PubMed  CAS  Google Scholar 

  17. Sadikot RT, Christman JW, Blackwell TS (2004) Molecular targets for modulating lung inflammation and injury. Curr Drug Targets 5:581–588

    CrossRef  PubMed  CAS  Google Scholar 

  18. Wang H, Yang H, Tracey KJ (2004) Extracellular role of HMGB1 in inflammation and sepsis. J Intern Med 255:320–331

    CrossRef  PubMed  CAS  Google Scholar 

  19. Muller S, Scaffidi P, Degryse B, et al (2001) New EMBO members’ review: the double life of HMGB1 chromatin protein: architectural factor and extracellular signal. Embo J 20:4337–4340

    CrossRef  PubMed  CAS  Google Scholar 

  20. Yang H, Wang H, Tracey KJ (2001) HMG-1 rediscovered as a cytokine. Shock 15:247–253

    PubMed  CAS  Google Scholar 

  21. Sappington PL, Yang R, Yang H, et al (2002)HMGB1B box increases the permeability of Caco-2 enterocytic monolayers and impairs intestinal barrier function in mice. Gastroenterology 123:790–802

    CrossRef  PubMed  CAS  Google Scholar 

  22. Taudte S, Xin H, Bell AJ Jr, Kallenbach NR (2001) Interactions between HMG boxes. Protein Eng 14:1015–1023

    CrossRef  PubMed  CAS  Google Scholar 

  23. Bustin M (2002) At the crossroads of necrosis and apoptosis: signaling to multiple cellular targets by HMGB1. Sci STKE 151:PE39

    Google Scholar 

  24. Andersson U, Wang H, Palmblad K, et al (2000) High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J Exp Med 192:565–570

    CrossRef  PubMed  CAS  Google Scholar 

  25. Scaffidi P, Misteli T, Bianchi ME (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418:191–195

    CrossRef  PubMed  CAS  Google Scholar 

  26. Wang H, Bloom O, Zhang M, et al (1999) HMG-1 as a late mediator of endotoxin lethality in mice. Science 285:248–251

    CrossRef  PubMed  CAS  Google Scholar 

  27. Abraham E, Arcaroli J, Carmody A, et al (2000) HMG-1 as a mediator of acute lung inflammation. J Immunol 165:2950–2954

    PubMed  CAS  Google Scholar 

  28. Yang H, Ochani M, Li J, et al (2004) Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proc Natl Acad Sci USA 101:296–301

    CrossRef  PubMed  CAS  Google Scholar 

  29. Sunden-Cullberg J, Norrby-Teglund A, Rouhiainen A, et al (2005) Persistent elevation of high mobility group box-1 protein (HMGB1) in patients with severe sepsis and septic shock. Crit Care Med 33:564–573

    CrossRef  PubMed  CAS  Google Scholar 

  30. Hotchkiss RS, Karl IE (2003) The pathophysiology and treatment of sepsis. N Engl J Med 348:138–150

    CrossRef  PubMed  CAS  Google Scholar 

  31. Ombrellino M, Wang H, Ajemian MS, et al (1999) Increased serum concentrations of highmobility-group protein 1 in haemorrhagic shock. Lancet 354:1446–1447

    CrossRef  PubMed  CAS  Google Scholar 

  32. Fang WH, Yao YM, Shi ZG, et al (2002) The significance of changes in high mobility group-1 protein mRNA expression in rats after thermal injury. Shock 17:329–333

    CrossRef  PubMed  Google Scholar 

  33. Le Tulzo Y, Shenkar R, Kaneko D, et al (1997) Hemorrhage increases cytokine expression in lung mononuclear cells in mice: involvement of catecholamines in nuclear factor-kappaB regulation and cytokine expression. J Clin Invest 99:1516–1524

    CrossRef  PubMed  Google Scholar 

  34. Moine P, Shenkar R, Kaneko D, et al (1997) Systemic blood loss affects NF-kappa B regulatory mechanisms in the lungs. Am J Physiol 273: L185–192

    PubMed  CAS  Google Scholar 

  35. Parsey MV, Tuder RM, Abraham E (1998) Neutrophils are major contributors to intraparenchymal lung IL-1 beta expression after hemorrhage and endotoxemia. J Immunol 160:1007–1013

    PubMed  CAS  Google Scholar 

  36. Shenkar R, Abraham E (1997) Hemorrhage induces rapid in vivo activation of CREB and NF-kappaB in murine intraparenchymal lung mononuclear cells. Am J Respir Cell Mol Biol 16:145–152

    PubMed  CAS  Google Scholar 

  37. Shenkar R, Abraham E (1993) Effects of hemorrhage on cytokine gene transcription. Lymphokine Cytokine Res 12:237–247

    PubMed  CAS  Google Scholar 

  38. Shenkar R, Coulson WF, Abraham E (1994) Hemorrhage and resuscitation induce alterations in cytokine expression and the development of acute lung injury. Am J Respir Cell Mol Biol 10:290–297

    PubMed  CAS  Google Scholar 

  39. Shenkar R, Yum HK, Arcaroli J, et al (2001) Interactions between CBP, NF-kappaB, and CREB in the lungs after hemorrhage and endotoxemia. Am J Physiol Lung Cell Mol Physiol 281:L418–426

    PubMed  CAS  Google Scholar 

  40. Fiuza C, Bustin M, Talwar S, et al (2003) Inflammation-promoting activity of HMGB1 on human microvascular endothelial cells. Blood 101:2652–2660

    CrossRef  PubMed  CAS  Google Scholar 

  41. Park JS, Arcaroli J, Yum HK, et al (2003) Activation of gene expression in human neutrophils by high mobility group box 1 protein. Am J Physiol Cell Physiol 284:C870–C879

    PubMed  CAS  Google Scholar 

  42. Kim JY, Park JS, Strassheim D, et al (2005) HMGB1 contributes to the development of acute lung injury after hemorrhage. Am J Physiol Lung Cell Mol Physiol 288:L958–L965

    CrossRef  PubMed  CAS  Google Scholar 

  43. Bucciarelli LG, Wendt T, Rong L, et al (2002) RAGE is a multiligand receptor of the immunoglobulin superfamily: implications for homeostasis and chronic disease. Cell Mol Life Sci 59:1117–1128

    CrossRef  PubMed  CAS  Google Scholar 

  44. Huttunen HJ, Fages C, Kuja-Panula J, et al (2002) Receptor for advanced glycation end products-binding COOH-terminal motif of amphoterin inhibits invasive migration and metastasis. Cancer Res 62:4805–4811

    PubMed  CAS  Google Scholar 

  45. Schmidt AM, Yan SD, Yan SF, Stern DM (2001) The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses. J Clin Invest 108:949–955

    CrossRef  PubMed  CAS  Google Scholar 

  46. Sparatore B, Pedrazzi M, Passalacqua M, et al (2002) Stimulation of erythroleukaemia cell differentiation by extracellular high-mobility group-box protein 1 is independent of the receptor for advanced glycation end-products. Biochem J 363:529–535

    CrossRef  PubMed  CAS  Google Scholar 

  47. Stern D, Du Yan S, Fang Yan S, Marie Schmidt A (2002) Receptor for advanced glycation endproducts: a multiligand receptor magnifying cell stress in diverse pathologic settings. Adv Drug Deliv Rev 54:1615–1625

    CrossRef  PubMed  CAS  Google Scholar 

  48. Hori O, Brett J, Slattery T, et al (1995) The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and coexpression of rage and amphoterin in the developing nervous system. J BiolChem 270:25752–25761

    CAS  Google Scholar 

  49. Huttunen HJ, Fages C, Rauvala H (1999) Receptor for advanced glycation end products (RAGE)-mediated neurite outgrowth and activation of NF-kappaB require the cytoplasmic domain of the receptor but different downstream signaling pathways. J Biol Chem 274:19919–19924

    CrossRef  PubMed  CAS  Google Scholar 

  50. Sajithlal G, Huttunen H, Rauvala H, Munch G (2002) Receptor for advanced glycation end products plays a more important role in cellular survival than in neurite outgrowth during retinoic acid-induced differentiation of neuroblastoma cells. J Biol Chem 277:6888–6897

    CrossRef  PubMed  CAS  Google Scholar 

  51. Schmidt AM, Hori O, Cao R, et al (1996) RAGE: a novel cellular receptor for advanced glycation end products. Diabetes 45(Suppl 3):S77–80

    PubMed  CAS  Google Scholar 

  52. Taniguchi N, Kawahara K, Yone K, et al (2003) Highmobility group box chromosomal protein 1 plays a role in the pathogenesis of rheumatoid arthritis as a novel cytokine. Arthritis Rheum 48:971–981

    CrossRef  PubMed  CAS  Google Scholar 

  53. Parkkinen J, Raulo E, Merenmies J, et al (1993) Amphoterin, the 30-kDa protein in a family of HMG1-type polypeptides. Enhanced expression in transformed cells, leading edge localization, and interactions with plasminogen activation. J Biol Chem 268:19726–19738

    PubMed  CAS  Google Scholar 

  54. Huttunen HJ, Kuja-Panula J, Rauvala H (2002) Receptor for advanced glycation end products (RAGE) signaling induces CREB-dependent chromogranin expression during neuronal differentiation. J Biol Chem 277:38635–38646

    CrossRef  PubMed  CAS  Google Scholar 

  55. Park JS, Gamboni-Robertson F, He Q, et al (2005) High Mobility Group Box 1 protein (HMGB1) interacts with multiple Toll like receptors. Am J Physiol Cell Physiol 290:C917–924

    CrossRef  PubMed  CAS  Google Scholar 

  56. Park JS, Svetkauskaite D, He Q, et al (2004) Involvement of Toll-like receptors 2 and 4 in cellular activation by High Mobility Group Box 1 protein. J Biol Chem 279:7370–7377

    CrossRef  PubMed  CAS  Google Scholar 

  57. O’Neill LA (2002) Signal transduction pathways activated by the IL-1 receptor/toll-like receptor superfamily. Curr Top Microbiol Immunol 270:47–61

    PubMed  CAS  Google Scholar 

  58. Bianchi ME, Beltrame M (2000) Upwardly mobile proteins. Workshop: the role of HMG proteins in chromatin structure, gene expression and neoplasia. EMBO Rep 1:109–114

    CrossRef  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Abraham, E. (2007). The Significance of HMGB1, a Late-Acting Pro-inflammatory Cytokine. In: Abraham, E., Singer, M. (eds) Mechanisms of Sepsis-Induced Organ Dysfunction and Recovery. Update in Intensive Care and Emergency Medicine, vol 44. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-30328-6_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-30328-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30157-8

  • Online ISBN: 978-3-540-30328-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics