Skip to main content

Cell Signaling Pathways of the Innate Immune System During Acute Inflammation

  • Conference paper
  • 1207 Accesses

Part of the Update in Intensive Care and Emergency Medicine book series (UICMSOFT,volume 44)

Keywords

  • Respiratory Syncytial Virus
  • West Nile Virus
  • Innate Immune System
  • Cell Signaling Pathway
  • Arterioscler Thromb Vasc Biol

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hoffman JA, Reichhart JM (1997) Drosophila immunity. Trends Cell Biol 7:309–316

    CrossRef  Google Scholar 

  2. Whitham S, Dinesh-Kumar SP, Choi D, Hehl R, Corr C, Baker B. (1994) The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell 78:1101–1115

    CrossRef  PubMed  CAS  Google Scholar 

  3. Franchimont D, Vermeire S, El Housni H, et al (2004) Deficient host-bacteria interactions in inflammatory bowel disease? The toll-like receptor (TLR)-4 Asp299gly polymorphism is associated with Crohn’s disease and ulcerative colitis. Gut 53:987–992

    CrossRef  PubMed  CAS  Google Scholar 

  4. Laberge M, Moore K, Freeman M (2005) Atherosclerosis and innate immune signaling. Ann Med 37:130–140

    CrossRef  PubMed  CAS  Google Scholar 

  5. Redecke V, Hacker H, Datta SK, et al (2004) Cutting edge: activation of Toll-like receptor 2 induces a Th2 immune response and promotes experimental asthma. J Immunol 172:2739–2743

    PubMed  CAS  Google Scholar 

  6. Pierer M, Rethage J, Seibl R, et al (2004) Chemokine secretion of rheumatoid arthritis synovial fibroblasts stimulated by Toll-like receptor 2 ligands. J Immunol 172:1256–1265

    PubMed  CAS  Google Scholar 

  7. Baker B, Ovigne J, Powles A, et al (2003) Normal keratinocytes express Toll-like receptors (TLRs) 1,2 and 5: Modulation of TLR expression in chronic plaque psoriasis. Br J Dermatol 148:670–679

    CrossRef  PubMed  CAS  Google Scholar 

  8. Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216

    CrossRef  PubMed  CAS  Google Scholar 

  9. Hoffman JA, Kafatos FC, Janeway CA, Ezekowitz RAB (1999) Phylogenetic perspectives in innate immunity. Science 284:1313–1317

    CrossRef  Google Scholar 

  10. Means TK, Golenbock DT, Fenton MJ (2000) The biology of Toll-like receptors. Cytokine Growth Factor Rev 11:219–232

    CrossRef  PubMed  CAS  Google Scholar 

  11. Neth O, Jack DL, Dodds AW, et al (2000) Mannose-binding lectin binds to a range of clinically relevant microorganisms and promotes complement deposition. Infect Immun 62:688–693

    CrossRef  Google Scholar 

  12. Lanier LL (1998) NK cell receptors. Annu Rev Immunol 16:359–393

    CrossRef  PubMed  CAS  Google Scholar 

  13. Stein D, Roth S, Vogelsang E, Nusslein-Volhard C (1991) The polarity of the dorsoventral axis in the Drosophila embryo is defined by an extracellular signal. Cell 65:725–735

    CrossRef  PubMed  CAS  Google Scholar 

  14. Bowie A, O’Neill L (2000) The interleukin-1 receptor/Toll-like receptor superfamily: Signal generators for pro-inflammatory interleukins and microbial products. J Leukoc Biol 67:508–514

    PubMed  CAS  Google Scholar 

  15. Cristofaro P, Opal SM (2006) Role of Toll like receptors in infection and immunity: clinical implications. Drugs 66:15–29

    CrossRef  PubMed  CAS  Google Scholar 

  16. Weiss DS, Raupach B, Takeda K, et al (2004) Toll-like receptors are temporarily involved in host defense. J Immunol 172:4463–4469

    PubMed  CAS  Google Scholar 

  17. Lancaster GI, Khan Q, Drysdale P, et al (2005) The physiological regulation of toll-like receptor expression and function in humans. J Physiol 563.3:945–955

    CrossRef  Google Scholar 

  18. Akira S, Takeda K (2004) Toll-like receptor signaling. Nat Rev Immunol 4:499–511

    CrossRef  PubMed  CAS  Google Scholar 

  19. Kawai T, Akira S (2005) Toll-like receptor downstream signaling. Arthritis Res Ther 7:12–19

    CrossRef  PubMed  CAS  Google Scholar 

  20. Zhang D, Zhang G, Hayden MS, et al (2004) A Toll-like receptor that prevents infection by uropathogenic bacteria. Science 303:1522–1526

    CrossRef  PubMed  CAS  Google Scholar 

  21. Takeda K (2005) Evolution and integration of innate immune recognition systems: the Toll-like receptors. J Endotoxin Res 11:51–55

    CrossRef  PubMed  CAS  Google Scholar 

  22. Hoebe K, Georgel P, Rutschmann S, et al (2005) CD36 is a sensor of diacylglycerides. Nature 433:523–527

    CrossRef  PubMed  CAS  Google Scholar 

  23. Yauch LE, Mansour MK, Sholham S, et al (2004) Involvement of CD14, Toll-like receptors 2 and 4, and MyD88 in the host response to the fungal pathogen Cryptococcus neoformans in vivo. Infect Immun 72:5373–5383

    CrossRef  PubMed  CAS  Google Scholar 

  24. Campos MA, Almeida IC, Takeuchi O, et al (2001) Activation of Toll-like receptor-2 by glycosylphosphatidylinositol anchors from a protozoan parasite. J Immunol 167:416–423

    PubMed  CAS  Google Scholar 

  25. Bieback K, Lien E, Klagge IM, et al (2002) Hemagglutinin protein of wild-type measles virus activates Toll-like receptor 2 signaling. J Virol 76:8729–8736

    CrossRef  PubMed  CAS  Google Scholar 

  26. Compton T, Kurt-Jones, EA, Boehme KW, et al (2003) Human cytomegalovirus activates inflammatory cytokine responses via CD14 and Toll-like receptor 2. J Virol 77:4588–4596

    CrossRef  PubMed  CAS  Google Scholar 

  27. Fitzgerald KA, Rowe DC, Barnes BJ, et al (2003) LPS-TLR4 signaling to IRF-3/7 and NF-kB involves the toll adapters TRAM and TRIF. J Exp Med 198:1043–1055

    CrossRef  PubMed  CAS  Google Scholar 

  28. Wang T, Town T, Alexopoulou L, et al (2004) Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med 10:1366–1373

    CrossRef  PubMed  CAS  Google Scholar 

  29. Aksoy E, Zouain CS, Vanhoutte F, et al (2005) Double-stranded RNAs from the helminth parasite Schistosoma activate TLR3 in dendritic cells. J Biol Chem 280:277–283

    PubMed  CAS  Google Scholar 

  30. Ameziane N, Beillat T, Verpillat P, et al (2003) Association of the Toll-like receptor gene Asp299Gly polymorphism with acute coronary events. Arterioscler Thromb Vasc Biol 23:61–64

    CrossRef  Google Scholar 

  31. Methe H, Kim J, Kofler S, et al (2005) Statins decrease toll-like receptor 4 expression and down-stream signaling in human CD14+ monocytes. Arterioscler Thromb Vasc Biol 25:1439–1445

    CrossRef  PubMed  CAS  Google Scholar 

  32. Hawn T, Verbon A, Janer M, et al (2005) Toll-like receptor 4 polymorphisms are associated with resistance to Legionnaires’ disease. Proc Natl Acad Sci 102:2487–2489

    CrossRef  PubMed  CAS  Google Scholar 

  33. Viriyakosol S, Tobias PS, Kitchens RL, Kirkland TN (2001) MD-2 binds to bacterial lipopolysaccharide. J Biol Chem 276:38044–38051

    PubMed  CAS  Google Scholar 

  34. Smith KD, Andersen-Nissen F, Hayashi K, et al (2003) Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nat Immunol 4:1247–1253

    CrossRef  PubMed  CAS  Google Scholar 

  35. Ramos, H, Rumbo M, Sirard J (2004) Bacterial flagellins: mediators of pathogenicity and host immune responses in mucosa. Trends Microbiol 12:509–516

    CrossRef  PubMed  CAS  Google Scholar 

  36. Dunstan S, Hawn T, Hue N, et al (2005) Host susceptibility and clinical outcomes in toll-like receptor 5-deficient patients with typhoid fever in Vietnam. J Infect Dis 191:1068–1071

    CrossRef  PubMed  CAS  Google Scholar 

  37. Heil F, Hemmi H, Hochrein H, et al (2004) Specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science 303:1526–1529

    CrossRef  PubMed  CAS  Google Scholar 

  38. Hemmi H, Takeuchi O, Kawai T, et al (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408:740–744

    CrossRef  PubMed  CAS  Google Scholar 

  39. Hasan U, Chaffois C, Gaillard C, et al (2005) Human TLR10 is a functional receptor, expressed on B cells and plasmacytoid dendritic cells, which activates gene transcription through MyD88. J Immunol 174:2942–2960

    PubMed  CAS  Google Scholar 

  40. Lazarus R, Raby BA, Lange C, et al (2004) Toll-like receptor 10 genetic variation is associated with asthma in two independent samples. Am J Respir Crit Care Med 170:594–600

    CrossRef  PubMed  Google Scholar 

  41. Yarovinsky F, Zhang D, Anderson J, et al (2005) TLR11 activation of dendritic cells by a protozoan profiling-like protein. Science 308:1626–1629

    CrossRef  PubMed  CAS  Google Scholar 

  42. Opitz B, Püschel A, Schmeck B, et al (2004) Nucleotide-binding oligomerization domain proteins are innate immune receptors for internalized Streptococcus pneumoniae. J Biol Chem 279:36426–36432

    CrossRef  PubMed  CAS  Google Scholar 

  43. Lakatos P, Lakatos L, Szalay F, et al (2005) Toll-like receptor 4 and NOD2/CARD 15mutations in Hungarian patients with Crohn’s disease: phenotype-genotype correlations. World J Gastroenterol 11:1489–1495

    PubMed  CAS  Google Scholar 

  44. Latz E, Franko J, Golenbock DT, et al (2004) Haemophilus influenzae Type b-outer membrane protein complex glycoconjugate vaccine induces cytokine production by engaging human Toll-like Receptor 2 (TLR2) and requires the presence of TLR2 for optimal immunogenicity. J Immunol 172:2431–2438

    PubMed  CAS  Google Scholar 

  45. Finberg RW, Kurt-Jones EA (2004) Viruses and Toll-like receptors. Microb Infect 6:1356–1360

    CrossRef  CAS  Google Scholar 

  46. Levitz SM (2004) Interactions of Toll-like receptors with fungi. Microb Infect 6:1351–1355

    CrossRef  CAS  Google Scholar 

  47. Balloy V, Si-Tahar M, Takeuchi O, et al (2005) Involvement of Toll-like receptor 2 in experimental invasive pulmonary aspergillosis. Infect Immun 73:5420–5425

    CrossRef  PubMed  CAS  Google Scholar 

  48. Netea MG, Sutmuller R, Herman C, et al (2004) Toll-like receptor 2 suppresses immunity against Candida albicans through induction of IL-10 and regulatory T cells. J Immunol 172:3712–3718

    PubMed  CAS  Google Scholar 

  49. Ellerbroek PM, Ulfman LH, Hoepelman AI, et al (2004) Cryptococcal glucuronoxylomannan interferes with neutrophil rolling on the endothelium. Cell Microbiol 6:581–592

    CrossRef  PubMed  CAS  Google Scholar 

  50. Underhill DM, Gantner B (2004) Integration of Toll-like receptor and phagocytic signaling for tailored immunity. Microb Infect 6:1368–1373

    CrossRef  CAS  Google Scholar 

  51. Gibot S (2005) Clinical review: Role of triggering receptor expressed on myeloid cells-1 during sepsis. Crit Care 9:485–489

    CrossRef  PubMed  Google Scholar 

  52. Ravetch JV, Bolland S (2001) IgG Fc receptors. Annu Rev Immunol 19:275–290

    CrossRef  PubMed  CAS  Google Scholar 

  53. Brinkmann V, Reichard U, Goosemann C, et al (2004) Neutrophil extracellular traps kill bacteria. Science 303:1532–1535

    CrossRef  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Opal, S.M., Cristofaro, P.A. (2007). Cell Signaling Pathways of the Innate Immune System During Acute Inflammation. In: Abraham, E., Singer, M. (eds) Mechanisms of Sepsis-Induced Organ Dysfunction and Recovery. Update in Intensive Care and Emergency Medicine, vol 44. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-30328-6_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-30328-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30157-8

  • Online ISBN: 978-3-540-30328-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics