Skip to main content

Resolution of Inflammation

  • Conference paper
  • 1145 Accesses

Part of the Update in Intensive Care and Emergency Medicine book series (UICMSOFT,volume 44)

Conclusion

Inflammation requires clearance of the inciting pathogen, then orchestrated removal of the burden of leukocytes and other cells influxed into the inflamed site along with dissipation of the pro (or anti) inflammatory mediator cascades. We now recognize that this resolution process is strictly controlled by a number of mediators and adhesion molecules. Apoptotic cell death, when timed appropriately, allows the non-phlogistic clearance of PMNs, monocytes and eosinophils. Macrophage engulfment of these apoptotic cells signals further anti-inflammatory processes, including additional programmed cell death, anti-inflammatory mediator release, and promotes active macrophage emigration which is the final route by which cell clearance is effected. Should these processes evolve successfully, then the tissue will return to its normal structure and function, but should this not proceed effectively then the body will limit further damage by evoking a fibrotic response to ‘heal and seal’ the damaged tissue.

Keywords

  • Apoptotic Cell
  • Leukoc Biol
  • Gamma Delta
  • Milky Spot
  • Prostaglandin Leukot Essent Fatty Acid

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Marshall JC (2001) Inflammation, coagulopathy, and the pathogenesis of multiple organ dysfunction syndrome. Crit Care Med 29(Suppl 7):S99–106

    PubMed  CAS  Google Scholar 

  2. Pinsky MR (2001) Sepsis: a pro-and anti-inflammatory disequilibrium syndrome. Contrib Nephrol 132:354–366

    PubMed  CAS  Google Scholar 

  3. Freeman BD, Buchman TG (2001) Interleukin-1 receptor antagonist as therapy for inflammatory disorders. Expert Opin Biol Ther 1:301–308

    PubMed  CAS  Google Scholar 

  4. Hultgren O, Kopf M, Tarkowski A (1999) Outcome of Staphylococcus aureus-triggered sepsis and arthritis in IL-4-deficient mice depends on the genetic background of the host. Eur J Immunol 29:2400–2405

    PubMed  CAS  Google Scholar 

  5. Saeftel M, Krueger A, Arriens S, et al (2004) Mice deficient in interleukin-4 (IL-4) or IL-4 receptor alpha have higher resistance to sporozoite infection with Plasmodium berghei (ANKA) than do naive wild-type mice. Infect Immun 72:322–331

    PubMed  CAS  Google Scholar 

  6. Cox G (1996) IL-10 enhances resolution of pulmonary inflammation in vivo by promoting apoptosis of PMNs. Am J Physiol 271:L566–L571

    PubMed  CAS  Google Scholar 

  7. Ayala A, Lehman DL, Herdon CD, et al (1994) Mechanism of enhanced susceptibility to sepsis following hemorrhage. Interleukin-10 suppression of T-cell response is mediated by eicosanoid-induced interleukin-4 release. Arch Surg 129:1172–1178

    PubMed  CAS  Google Scholar 

  8. Latifi SQ, O’Riordan MA, Levine AD (2002) Interleukin-10 controls the onset of irreversible septic shock. Infect Immun 70:4441–4446

    PubMed  CAS  Google Scholar 

  9. Lee PJ, Zhang X, Shan P, et al (2006) ERK1/2 mitogen-activated protein kinase selectively mediates IL-13-induced lung inflammation and remodeling in vivo. J Clin Invest 116:163–173

    PubMed  CAS  Google Scholar 

  10. Zhou Zhu, Robert J. Homer, et al (1999) Elias Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production J Clin Invest 103:779–788

    PubMed  CAS  Google Scholar 

  11. Socha LA, Gowardman J, Silva D, Correcha M, Petrosky N (2006) Elevation in interleukin 13 levels in patients diagnosed with systemic inflammatory response syndrome. Intensive Care Med 32:244–250

    PubMed  Google Scholar 

  12. Blanco-Quiros A, Casado-Flores J, GarroteAdrados JA, Moro MN, Anton JA, Sanz EA (2005) Interleukin-13 is involved in the survival of children with sepsis. Acta Paediatr 94:1828–1831

    PubMed  Google Scholar 

  13. Hodge-Dufour J, Marino MW, Horton MR, et al (1998) Inhibition of interferon gamma induced interleukin 12 production: a potential mechanism for the anti-inflammatory activities of tumor necrosis factor. Proc Natl Acad Sci USA 95:13806–13811

    PubMed  CAS  Google Scholar 

  14. Bohn E, Sing A, Zumbihl R, et al (1998) IL-18 (IFN-gamma-inducing factor) regulates early cytokine production in, and promotes resolution of, bacterial infection in mice. J Immunol 160:299–307

    PubMed  CAS  Google Scholar 

  15. Nakagawa R, Naka T, Tsutsui H, et al (2002) SOCS-1 participates in negative regulation of LPS responses. Immunity 17:677–687

    PubMed  CAS  Google Scholar 

  16. Dinarello CA (1998) Interleukin-1 beta, interleukin-18, and the interleukin-1 beta converting enzyme. Ann NY Acad Sci 856:1–11

    PubMed  CAS  Google Scholar 

  17. Fernandez-Botran R (1999) Soluble cytokine receptors: basic immunology and clinical applications. Crit Rev Clin Lab Sci 36:165–224

    PubMed  CAS  Google Scholar 

  18. van der Poll T, van Deventer SJ (1999) Cytokines and anticytokines in the pathogenesis of sepsis. Infect Dis Clin North Am 13:413–426

    PubMed  Google Scholar 

  19. Aderka D (1996) The potential biological and clinical significance of the soluble tumor necrosis factor receptors. Cytokine Growth Factor Rev 7:231–240

    PubMed  CAS  Google Scholar 

  20. Fas SC, Fritzsching B, Suri-Payer E, Krammer PH (2006) Death receptor signaling and its function in the immune system. Curr Dir Autoimmun 9:1–17

    PubMed  Google Scholar 

  21. Belli F, Capra A, Moraiti A, Rossi S, Rossi P (2000) Cytokines assay in peripheral blood and bronchoalveolar lavage in the diagnosis and staging of pulmonary granulomatous diseases. Int J Immunopathol Pharmacol 13:61–67

    PubMed  CAS  Google Scholar 

  22. Whyte M, Hubbard R, Meliconi R, et al (2000) Increased risk of fibrosing alveolitis associated with interleukin-1 receptor antagonist and tumor necrosis factor-alpha gene polymorphisms. Am J Respir Crit Care Med 162:755–758

    PubMed  CAS  Google Scholar 

  23. Goodman RB, Pugin J, Lee JS, Matthay MA (2003) Cytokine-mediated inflammation in acute lung injury. Cytokine Growth Factor Rev 14:523–535

    PubMed  CAS  Google Scholar 

  24. Ohta A, Sitkovsky M (2001) Role of G-protein-coupled adenosine receptors in down regulation of inflammation and protection from tissue damage. Nature 414:916–920

    PubMed  CAS  Google Scholar 

  25. Thiel M, Chouker A, Ohta A, et al (2005) Oxygenation inhibits the physiological tissue-protecting mechanism and thereby exacerbates acute inflammatory lung injury. PLoS Biol 3:e174

    PubMed  Google Scholar 

  26. Serhan CN, Savill J (2005) Resolution of inflammation: the beginning programs the end. Nat Immunol 6:1191–1197

    PubMed  CAS  Google Scholar 

  27. Filep JG, Khreiss T, Jozsef L (2005) Lipoxins and aspirin-triggered lipoxins in PMN adhesion and signal transduction. Prostaglandins Leukot Essent Fatty Acids 73:257–262

    PubMed  CAS  Google Scholar 

  28. Maderna P, Godson C (2005) Taking insult from injury: lipoxins and lipoxin receptor agonists and phagocytosis of apoptotic cells. Prostaglandins Leukot Essent Fatty Acids. 73:179–187

    PubMed  CAS  Google Scholar 

  29. Machado FS, Johndrow JE, Esper L, et al (2006) Anti-inflammatory actions of lipoxin A(4) and aspirin-triggered lipoxin are SOCS-2 dependent. Nat Med 12:330–334

    PubMed  CAS  Google Scholar 

  30. Serhan CN (2004) A search for endogenous mechanisms of anti-inflammation uncovers novel chemical mediators: missing links to resolution. Histochem Cell Biol 122:305–321

    PubMed  CAS  Google Scholar 

  31. Arita M, Clish CB, Serhan CN (2005) The contributions of aspirin and microbial oxygenase to the biosynthesis of anti-inflammatory resolvins: novel oxygenase products from omega-3 polyunsaturated fatty acids. Biochem Biophys Res Commun. 338:149–157

    PubMed  CAS  Google Scholar 

  32. Ilarregui JM, Bianco GA, Toscano MA, Rabinovich GA (2005) The coming of age of galectins as immunomodulatory agents: impact of these carbohydrate binding proteins in T cell physiology and chronic inflammatory disorders. Ann Rheum Dis 64(Suppl 4):iv96–103

    PubMed  CAS  Google Scholar 

  33. Colnot C, Ripoche MA, Milon G, Montagutelli X, Crocker PR, Poirier F (1998) Maintenance of granulocyte numbers during acute peritonitis is defective in galectin-3-null mutant mice. Immunology 94:290–296

    PubMed  CAS  Google Scholar 

  34. Nieminen J, St-Pierre C, Sato S (2005) Galectin-3 interacts with naive and primed PMNs, inducing innate immune responses. J Leukoc Biol 78:1127–1135

    PubMed  CAS  Google Scholar 

  35. Zuberi RI, Hsu DK, Kalayci O, et al (2004) Critical role for galectin-3 in airway inflammation and bronchial hyperresponsiveness in a murine model of asthma. Am J Pathol 165:2045–2053

    PubMed  CAS  Google Scholar 

  36. Waelput W, Brouckaert P, Broekaert D, Tavernier J (2002) A role for leptin in the systemic inflammatory response syndrome (SIRS) and in immune response. Curr Drug Targets Inflamm Allergy 1:277–289

    PubMed  CAS  Google Scholar 

  37. Fiuza C, Suffredini AF (2001) Human models of innate immunity: local and systemic inflammatory responses. J Endotoxin Res 7:385–388

    PubMed  CAS  Google Scholar 

  38. Bornstein SR, Licinio J, Tauchnitz R, et al (1998) Plasma leptin levels are increased in survivors of acute sepsis: associated loss of diurnal rhythm, in cortisol and leptin secretion. J Clin Endocrinol Metab 83:280–283

    PubMed  CAS  Google Scholar 

  39. Matarese G, Moschos S, Mantzoros CS (2005) Leptin in immunology. J Immunol. 174:3137–3142

    PubMed  CAS  Google Scholar 

  40. Liew FY (2001) Th1 and Th2 cells: a historical perspective. Nat Rev Immunol 2:55–60

    Google Scholar 

  41. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL (1986) Two types of murine helper T cell clone. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136:2348–2357

    PubMed  CAS  Google Scholar 

  42. Romagnani S (1991) Human Th1 and Th2 subsets: doubt nomore. Immunol Today 12:256–257

    PubMed  CAS  Google Scholar 

  43. Amsen D, Blander JM, Lee GR, Tanigaki K, Honjo T, Flavell RA (2004) Instruction of distinct CD4 T helper cell fates by different notch ligands on antigen-presenting cells. Cell 117:515–526

    PubMed  CAS  Google Scholar 

  44. O’Garra A, Arai N (2000) The molecular basis of T helper 1 and T helper 2 cell differentiation. Trends Cell Biol 10:542–548

    PubMed  CAS  Google Scholar 

  45. Gor D, Rose N, Greenspan N (2003) Th1–Th2: a procrustean paradigm. Nat Immunol 4:503–505

    PubMed  CAS  Google Scholar 

  46. Sandler NG, Mentink-Kane MM, Cheever AW, Wynn TA (2003) Global gene expression profiles during acute pathogen-induced pulmonary inflammation reveal divergent roles for Th1 and Th2 responses in tissue repair. J Immunol 171:3655–3667

    PubMed  CAS  Google Scholar 

  47. Murphy KM, Reiner SL (2002) The lineage decisions of helper T cells. Nat Rev Immunol 2:933–944

    PubMed  CAS  Google Scholar 

  48. Peterson JD, Herzenberg LA, Vasquez K, Waltenbaugh C (1998) Glutathione levels in antigenpresenting cells modulate Th1 versus Th2 response patterns. Proc Natl Acad Sci USA 95:3071–3076

    PubMed  CAS  Google Scholar 

  49. Kidd P (2003) Th1/Th2 balance: the hypothesis, its limitations, and implications for health and disease. Altern Med Rev 8:223–246

    PubMed  Google Scholar 

  50. Piccinni MP, Scaletti C, Maggi E, Romagnani S (2000) Role of hormone controlled Th1 and Th2 type cytokines in successful pregnancy. J Neuroimmunol 109:30–33

    PubMed  CAS  Google Scholar 

  51. Rook GA (1999) Glucocorticoids and immune function. Baill Clin Endocrinol Metab 13:567–581

    CAS  Google Scholar 

  52. Roberts AI, Devadas S, Zhang X, et al (2003) The role of activation-induced cell death in the differentiation of T-helper-cell subsets. Immunol Res 28:285–293

    PubMed  Google Scholar 

  53. June CH, Blazar BR (2006) Clinical application of expanded CD4(+)25(+) cells. Semin Immunol 18:78–88

    PubMed  CAS  Google Scholar 

  54. Carding SR, Egan PJ (2000) The importance of gamma delta T cells in the resolution of pathogen-induced inflammatory immune responses. Immunol Rev 173:98–108

    PubMed  CAS  Google Scholar 

  55. Thepen T, van Vuuren AJ, Kiekens RC, Damen CA, Vooijs WC, van De Winkel JG (2000) Resolution of cutaneous inflammation after local elimination of macrophages. Nat Biotechnol 18:48–51

    PubMed  CAS  Google Scholar 

  56. Lan HY, Mitsuhashi H, Ng YY, et al (1997) Macrophage apoptosis in rat crescentic glomerulonephritis. Am J Pathol 151: 531–538

    PubMed  CAS  Google Scholar 

  57. Tidball JG, St Pierre BA (1996) Apoptosis of macrophages during the resolution of muscle inflammation. J Leukoc Biol 59:380–388

    PubMed  CAS  Google Scholar 

  58. Ashcroft GS (1999) Bidirectional regulation of macrophage function by TGF-beta. Microbes Infect 1:1275–1282

    PubMed  CAS  Google Scholar 

  59. Riches DW (1995) Signalling heterogeneity as a contributing factor in macrophage functional diversity. Semin Cell Biol 6:377–384

    PubMed  CAS  Google Scholar 

  60. Lake FR, Noble PW, Henson PM, Riches DW (1994) Functional switching of macrophage responses to tumor necrosis factor-alpha (TNF alpha) by interferons. Implications for the pleiotropic activities of TNF alpha. J Clin Invest 93:1661–1669

    PubMed  CAS  Google Scholar 

  61. Porcheray F, Viaud S, Rimaniol AC, et al (2005) Macrophage activation switching: an asset for the resolution of inflammation. Clin Exp Immunol 142:481–489

    PubMed  CAS  Google Scholar 

  62. Cohen JJ, Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    Google Scholar 

  63. Cohen JJ (1993) Programmed cell death and apoptosis in lymphocyte development and function. Chest 103:99S–101S

    PubMed  CAS  Google Scholar 

  64. Mahidhara R, Billiar TR (2000) Apoptosis in sepsis. Crit Care Med 28:N105–N113

    PubMed  CAS  Google Scholar 

  65. Haslett C (1999) Granulocyte apoptosis and its role in the resolution and control of lung inflammation. Am J Respir Crit Care Med 160:S5–11

    PubMed  CAS  Google Scholar 

  66. Savill JS, Wyllie AH, Henson JE, Walport MJ, Henson PM, Haslett C (1989) Macrophage phagocytosis of aging PMNs in inflammation. Programmed cell death in the PMN leads to its recognition by macrophages. J Clin Invest 83:865–875

    PubMed  CAS  Google Scholar 

  67. Hannah S, Cotter TG, Wyllie AH, Haslett C (1994) The role of oncogene products in PMN apoptosis. Biochem Soc Trans 22:253S

    PubMed  CAS  Google Scholar 

  68. Camapana D, Cleveland JL (1996) Regulationof apoptosis in normal hemopoiesis and hematological disease. In: Brenner MK, Hoffbrand AV (eds) Recent Advances in Haematology. Churchill Livingstone, New York, pp 112–121

    Google Scholar 

  69. Lub-de Hooge MN, de Jong S, Vermot-Desroches C, Tulleken JE, de Vries EG, Zijlstra JG (2004) Endotoxin increases plasma soluble tumor necrosis factor-related apoptosis-inducing ligand level mediated by the p38 mitogen-activated protein kinase signaling pathway. Shock 22:186–188

    PubMed  CAS  Google Scholar 

  70. De Freitas I, Fernandez-Somoza M, Essenfeld-Sekler E, Cardier JE (2004) Serum levels of the apoptosis-associated molecules, tumor necrosis factor-alpha/tumor necrosis factor type-I receptor and Fas/FasL, in sepsis. Chest 125:2238–2246

    PubMed  Google Scholar 

  71. Wesche-Soldato DE, Lomas-Neira JL, Perl M, Jones L, Chung CS, Ayala A (2005) The role and regulation of apoptosis in sepsis. J Endotoxin Res 11:375–382

    PubMed  CAS  Google Scholar 

  72. Ho PK, Hawkins CJ (2005) Mammalian initiator apoptotic caspases. FEBS J 272:5436–5453

    PubMed  CAS  Google Scholar 

  73. Harwood SM, Yaqoob MM, Allen DA (2005) Caspase and calpain function in cell death: bridging the gap between apoptosis and necrosis. Ann Clin Biochem 42:415–431

    PubMed  CAS  Google Scholar 

  74. Lavrik IN, Golks A, Krammer PH (2005) Caspases: pharmacological manipulation of cell death. J Clin Invest 115:2665–2672

    PubMed  CAS  Google Scholar 

  75. Green DR (2005) Apoptotic pathways: ten minutes to dead. Cell 121:671–674

    PubMed  CAS  Google Scholar 

  76. Savill J, Hogg N, Ren Y Haslett C (1992) Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of PMNs undergoing apoptosis. J Clin Invest 90:1513–1522

    PubMed  CAS  Google Scholar 

  77. Fadok VA, Savill JS, Haslett C, et al. (1992) Different populations of macrophages use either the vitronectin receptor or the phosphatidylserine receptor to recognize and remove apoptotic cells. J Immunol 149:4029–4035

    PubMed  CAS  Google Scholar 

  78. Hart SP, Dougherty GJ, Haslett C, Dransfield I (1997) CD44 regulates phagocytosis of apoptotic PMN granulocytes, but not apoptotic lymphocytes, by human macrophages. J Immunol 159:919–925

    PubMed  CAS  Google Scholar 

  79. Devitt A, Moffatt OD, Raykundalia C, Capra JD, Simmons DL, Gregory CD (1998) Human CD14 mediates recognition and phagocytosis of apoptotic cells. Nature 392:505–509

    PubMed  CAS  Google Scholar 

  80. Meagher LC, Savill JS, Baker A Fuller RW, Haslett C (1992) Phagocytosis of apoptotic PMNs does not induce macrophage release of thromboxane B2. J Leukoc Biol 52:269–273

    PubMed  CAS  Google Scholar 

  81. Savill J, Dransfield I, Gregory C, Haslett C (2002) Ablast from the past: clearance of apoptotic cells regulates immune responses. Nat Rev Immunol 2:965–975

    PubMed  CAS  Google Scholar 

  82. Brown SB, Savill J (1999) Phagocytosis triggers macrophage release of Fas ligand and induces apoptosis of bystander leukocytes. J Immunol 162:480–485

    PubMed  CAS  Google Scholar 

  83. Fadok VA Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM (1998) Macrophages that have ingested apoptotic cells in vitro inhibit pro-inflammatory cytokine production through autocrine/paracrine mechanisms involving TGFb, PGE2 and PAF. J Clin Invest 101:890–898

    PubMed  CAS  Google Scholar 

  84. McDonald PP, Fadok VA, Bratton D, et al (1999) Transcriptional and translational regulation of inflammatory mediator production by endogenous TGF-beta in macrophages that have ingested apoptotic cells. J Immunol 163:6164–6172

    PubMed  CAS  Google Scholar 

  85. Stern M, Savill J, Haslett C (1996) Human monocyte-derived macrophage phagocytosis of senescent eosinophils undergoing apoptosis. Mediation by alpha v beta 3/CD36/thrombospondin recognition mechanism and lack of phlogistic response. Am J Pathol 149:911–921

    PubMed  CAS  Google Scholar 

  86. Van Parijs L, Abbas AK (1998) Homeostasis and self-tolerance in the immune system: turning lymphocytes off. Science 280:243–248

    PubMed  Google Scholar 

  87. Mangan DF, Wahl SM (1991) Differential regulation of human monocyte programmed cell death (apoptosis) by chemotactic factors and pro-inflammatory cytokines. J Immunol 147:3408–3412

    PubMed  CAS  Google Scholar 

  88. Zychlinsky A, Prevost MC, Sansonetti PJ (1992) Shigella flexneri induces apoptosis in infected macrophages. Nature 358:167–169

    PubMed  CAS  Google Scholar 

  89. Bellingan GJ, Caldwell H, Howie SE, et al (1996) In vivo fate of the inflammatory macrophage during the resolution of inflammation: inflammatory macrophages do not die locally, but emigrate to the draining lymph nodes. J Immunol 157:2577–2585

    PubMed  CAS  Google Scholar 

  90. Jimenez MF, Watson RW, Parodo J, et al (1997) Dysregulated expression of PMN apoptosis in the systemic inflammatory response syndrome. Arch Surg 132:1263–1269

    PubMed  CAS  Google Scholar 

  91. Keel M, Ungethum U, Steckholzer U et al (1997) Interleukin-10 counterregulates proin-flammatory cytokine-induced inhibition of PMN apoptosis during severe sepsis. Blood 90:3356–3363

    PubMed  CAS  Google Scholar 

  92. Meagher LC, Cousin JM, Seckl JR, Haslett C (1996) Opposing effects of glucocorticoids on the rate of apoptosis in PMNic and eosinophilic granulocytes. J Immunol 156:4422–4428

    PubMed  CAS  Google Scholar 

  93. Meszaros AJ, Reichner JS, Albina JE (1999) Macrophage phagocytosis of wound PMNs. J Leukoc Biol 65:35–42

    PubMed  CAS  Google Scholar 

  94. Ishii Y, Hashimoto K, Nomura A, et al (1998) Elimination of PMNs by apoptosis during the resolution of acute pulmonary inflammation in rats. Lung 176:89–98

    PubMed  CAS  Google Scholar 

  95. Reville K, Crean JK, Vivers S, Dransfield I, Godson C (2006) Lipoxin A4 redistributes myosin IIA and Cdc42 in macrophages: Implications for phagocytosis of apoptotic leukocytes. J Immunol 176:1878–1888

    PubMed  CAS  Google Scholar 

  96. Liu Y, Cousin JM, Hughes J, et al (1999) Glucocorticoids promote nonphlogistic phagocytosis of apoptotic leukocytes. J Immunol 162:3639–3646

    PubMed  CAS  Google Scholar 

  97. Bellingan GJ, Xu P, Cooksley H, et al (2002) Adhesion molecule-dependent mechanisms regulate the rate of macrophage clearance during the resolution of peritoneal inflammation. J Exp Med 196:1515–1521

    PubMed  CAS  Google Scholar 

  98. Hotchkiss RS, Chang KC, Grayson MH, et al (2003) Adoptive transfer of apoptotic splenocytes worsens survival, whereas adoptive transfer of necrotic splenocytes improves survival in sepsis. Proc Natl Acad Sci USA 100:6724–6729

    PubMed  CAS  Google Scholar 

  99. Bellingan G, Bottoms S, Xu P, Shock T, Laurent G (2004) Apoptotic Cells Promote Inflammatory Macrophage Clearance through a b1 Integrin Dependent Mechanism. Am J Respir Crit Care Med 171:A502 (abst)

    Google Scholar 

  100. Cao C, Lawrence DA, Strickland DK, Zhang L (2005) A specific role of integrin Mac-1 in accelerated macrophage efflux to the lymphatics. Blood 106:3234–3241

    PubMed  CAS  Google Scholar 

  101. MacPhee PJ, Schmidt EE, Groom AC (1992) Evidence for Kuppfer cell migration along liver sinusoids from high resolution in vivo microscopy. Am J Physiol 263:G17–23

    PubMed  CAS  Google Scholar 

  102. Geissmann F, Jung S, Littman DR (2003) Blood monocytes consist of two principle subsets with distinct migratory properties Immunity 19:71–82

    PubMed  CAS  Google Scholar 

  103. Cailhier JF, Partolina M, Vuthoori S, et al (2005) Conditional macrophage ablation demonstrates that resident macrophages initiate acute peritoneal inflammation. J Immunol 174:2336–2342

    PubMed  CAS  Google Scholar 

  104. Bellingan G (1999) Inflammatory cell activation in sepsis. Br Med Bull 55:12–29

    PubMed  CAS  Google Scholar 

  105. Stuart LM, Lucas M, Simpson C, Lamb J, Savill J, Lacy-Hulbert A (2002) Inhibitory effects of apoptotic cell ingestion upon endotoxin-driven myeloid dendritic cell maturation. J Immunol 168:1627–1635

    PubMed  CAS  Google Scholar 

  106. Debes GF, Bonhagen K, Wolff T, et al (2004) Chemokine receptor CCR7 required for T lymphocyte exit from peripheral tissues Nat Immunol 6:889–834

    Google Scholar 

  107. Hirao M, Onai N, Hiroishi K, et al (2000) CC chemokine receptor-7 on dendritic cells is induced after interaction with apoptotic tumor cells: critical role in migration from the tumor site to draining lymph nodes. Cancer Res 60:2209–2217

    PubMed  CAS  Google Scholar 

  108. Tsokos GC, Liossis SN (1998) Lymphocytes, cytokines, inflammation, and immune trafficking. Curr Opin Rheumatol 10:417–425

    PubMed  CAS  Google Scholar 

  109. Marshall RP, Bellingan G, Webb S, et al (2000) Fibroproliferation occurs early in the acute respiratory distress syndrome and impacts on outcome. Am J Respir Crit Care Med 162:1783–1788

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bellingan, G. (2007). Resolution of Inflammation. In: Abraham, E., Singer, M. (eds) Mechanisms of Sepsis-Induced Organ Dysfunction and Recovery. Update in Intensive Care and Emergency Medicine, vol 44. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-30328-6_10

Download citation

  • DOI: https://doi.org/10.1007/3-540-30328-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30157-8

  • Online ISBN: 978-3-540-30328-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics