Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

3.8 Literature

  • Adrian T, Bessling B, Hallmann H, Niekerken V, Spindler A, Ohligschlager A and Rumpf M (1996) Vorrichtung zur Durchführung von Destillationen und heterogen katalysierten Reaktionen (Patent DE19869598A1). Deutschland.

    Google Scholar 

  • Agar D W (1999) “Multifunctional reactors: Old preconceptions and new dimensions.” Chem. Eng. Sci. 54: 1299–1305.

    Article  CAS  Google Scholar 

  • Agreda V H and Lilly R D (1990) Preparation of Ultra High Purity Methyl Acetate. United States Patent 4,939,294. USA, Eastman Kodak Company, Rochester, N.Y.

    Google Scholar 

  • Agreda V H and Partin L R (1984) Reactive Distillation Process For The Production Of Methyl Acetate. United States Patent 4,435,595. USA, Eastman Kodak Company, Rochester, N.Y.

    Google Scholar 

  • Agreda V H, Partin L R and Heise W H (1990) “High-Purity Methyl Acetate via Reactive Distillation.” Chem. Eng. Prog. 86: 40–46.

    CAS  Google Scholar 

  • Alejski K (1991) “Computation of the Reacting Distillation Column Using a Liquid Mixing Model on the Plates.” Comput. Chem. Eng. 15(5): 313–323.

    Article  CAS  Google Scholar 

  • Baerns M, Hofmann H and Renken A (1992) Chemische Reaktionstechnik. Stuttgart, Georg Thieme Verlag.

    Google Scholar 

  • Barreira M N, de Toledo E C V, Filho R M and das Graças E M (2003) “Use of Different Numerical Solution Approaches for a Three-Phase Slurry Catalytic Reactor Model.” Int. J. of Chem. Rec. Eng. 1: A53.

    Google Scholar 

  • Bart H J and Landschützer H (1996) “Heterogene Reaktivdestillation mit axialer Rückvermischung.” Chemie Ingenieur Technik: 944–946.

    Google Scholar 

  • Baur R, Taylor R and Krishna R (2004) “Dynamic behaviour of reactive distillation columns described by a nonequilibrium stage model.” Chemical Engineering Science 56: 2085–2102.

    Article  Google Scholar 

  • Bell R L (1972) “Residence Time and Fluid Mixing on Commercial Scale Sieve Trays.” AIChE Journal 18: 498–505.

    Article  CAS  Google Scholar 

  • Bennett D L and Grimm H J (1991) “Eddy Diffusivity for Distillation Sieve Trays.” AIChE Journal 37: 589–596.

    Article  CAS  Google Scholar 

  • Billet R (1995) Packed Towers. Weinheim, VCH.

    Google Scholar 

  • Bird R B, Stewart W E and Lightfood E N (2001) Transport Phenomena. New York, John Wiley and Sons.

    Google Scholar 

  • Bornscheuer U T (2002) “Microbial carboxyl esterases: classification, properties and application in biocatalysis.” Fems Microbiology Reviews 26(1): 73–81.

    Article  CAS  Google Scholar 

  • Bravo J L and Fair J R (1982) “Generalized Correlation for Mass Transfer in Packed Distillation Columns.” Ind. Eng. Chem. Process Des. Dev. 21: 162–170.

    Article  CAS  Google Scholar 

  • BriteEuram (1997) Technical Report: Transesterifcation of Methyl Acetate with Ethanol.

    Google Scholar 

  • Buchaly C, Lauterbach S, Kreis P and Górak A (2005) Membrane Assisted Reactive Distillation and Batch Reaction. Aachener Membrankolloquium, Aachen.

    Google Scholar 

  • Choudary B M, Kantam M L, Reddy C V, Aranganathan S, Santhi P L and Figueras F (2000) “Mg-Al-O-t-Bu hydrotalcite: a new and efficient heterogeneous catalyst for transesterification.” Journal of Molecular Catalysis A-Chemical 159(2): 411–416.

    Article  CAS  Google Scholar 

  • Comelli F and Francesconi R (1997) “Isothermal vapor-liquid equilibria measurements, excess molar enthalpies, and excess molar volumes of dimethyl carbonate plus methanol, plus ethanol, and plus propan-1-ol at 313.15 K.” Journal of Chemical and Engineering Data 42(4): 705–709.

    Article  CAS  Google Scholar 

  • Comelli F, Francesconi R and Castellari C (2001) “Excess molar enthalpies and excess molar volumes of binary mixtures containing dialkyl carbonates plus pine resins at (298.15 and 313.15) K.” Journal of Chemical and Engineering Data 46(1): 63–68.

    Article  CAS  Google Scholar 

  • Comelli F, Francesconi R and Ottani S (1996) “Isothermal vapor-liquid equilibria of dimethyl carbonate plus diethyl carbonate in the range (313.15 to 353.15) K.” Journal of Chemical and Engineering Data 41(3): 534–536.

    Article  CAS  Google Scholar 

  • Comelli F, Ottani S and Francesconi R (1997) “Excess molar enthalpies and excess molar volumes of dimethyl carbonate plus seven alkyl acetates at 298.15 K.” Journal of Chemical and Engineering Data 42(6): 1208–1211.

    Article  CAS  Google Scholar 

  • Cornils B and Herrmann W A (1996) Applied Homogeneous Catalysis with Organometallic Compounds. Weinheim, VCH.

    Google Scholar 

  • Danckwerts P V (1953) “Continuous Flow Systems-Distribution of Residence Times.” Chem. Eng. Sci. 2: 1–13.

    Article  CAS  Google Scholar 

  • Danckwerts P V (1970) Gas-Liquid Reactions. New York, McGraw-Hill.

    Google Scholar 

  • Dartt C B and Davis M E (1994) “Applications of Zeolites to Fine Chemicals Synthesis.” Catalysis Today 19(1): 151–186.

    Article  CAS  Google Scholar 

  • Davies B and Jeffreys G V (1973) “The Continuous Trans-Esterification of Ethyl Alcohol and Butyl Acetate in a Sieve Plate Column-Part III: Trans-Esterification in a Six Plate Sieve Plate Column.” Trans. Instn Chem. Engrs 51: 275–280.

    CAS  Google Scholar 

  • DECHEMA (2005) DETHERM-Thermophysical properties of pure substances & mixtures. Frankfurt a. M., Germany, DECHEMA e.V. 2005.

    Google Scholar 

  • DeGarmo J L, Parulekar V N and Pinjala V (1992) “Consider Reactive Distillation.” Chem. Eng. Prog. 88(3): 42–50.

    Google Scholar 

  • Doherty M F and Malone M F (2001) Conceptual Design of Distillation Systems. New York, McGraw Hill.

    Google Scholar 

  • Doraiswamy L L and Sharma M. M (1984) Heterogeneous Reactions: Analysis, Examples and Reactor Design. New York.

    Google Scholar 

  • Drauz K and Waldmann H (1995) Enzyme Catalysis in Organic Synthesis. Weinheim, VCH.

    Google Scholar 

  • Egorov Y, Menter F, Kloeker M and Kenig E Y (2002) Detaillierte CFD Berechnung der Hydrodynamik in strukturierten Packungen. GVCFachausschuesse “Waerme-und Stoffaustausch” und “CFD-Computational Fluid Dynamics”. Weimar.

    Google Scholar 

  • Egorov Y, Menter F, Kloeker M and Kenig E Y (2005) “On the combination of CFD and rate-based modelling in the simulation of reactive separation processes.” Chemical Engineering and Processing 44: 631–644.

    Article  CAS  Google Scholar 

  • Ellenberger J and Krishna R (1999) “Counter-current Operation of Structure Catalytically Packed Distillation Columns: Pressure Drop, Holdup and Mixing.” Chem. Eng. Sci. 54: 1339–1345.

    Article  CAS  Google Scholar 

  • Figueras F, Tichit D, Naciri M B and Ruiz R (1998) “Selective Aldolisation of Acetone Into Diacetone Alcohol Using Hydrotalcites as Catalysts.” Chemical Industries (Dekker) 75: 37–49.

    CAS  Google Scholar 

  • Flory P J (1941) J. Chem. Phys. 9: 660.

    Article  CAS  Google Scholar 

  • Flory P J (1942) J. Chem. Phys. 10: 51.

    Article  CAS  Google Scholar 

  • Francesconi R and Comelli F (1997) “Excess molar enthalpies, densities, and excess molar volumes of diethyl carbonate in binary mixtures with seven nalkanols at 298.15 K.” Journal of Chemical and Engineering Data 42(1): 45–48.

    Article  CAS  Google Scholar 

  • Froment G F and Bischoff K B (1990) Chemical Reactor Analysis and Design. New York, John Wiley & Sons Inc.

    Google Scholar 

  • Fuchigami Y (1990) “Hydrolysis of Methyl Acetate in Distillatiom Column Packed with Reactive Packing of Ion Exchange Resin.” Journal of Chemical Engineering of Japan 23(3): 354–359.

    Article  CAS  Google Scholar 

  • Gelbein A P and Buchholz M (2000) Process and Structure For Effecting Catalytic Reactions in Distillation Structure (EP 0428265B2).

    Google Scholar 

  • Giessler S, Danilov R Y, Pisarenko R Y, Serafimov L A, Hasebe S and Hashimoto I (1999) “Feasible Separation Modes for Various Reactive Distillation Systems.” Ind. Eng. Chem. Res. 38: 4060–4067.

    Article  CAS  Google Scholar 

  • Gmehling J, Menke J, Krafczyk J and Fischer K (1994) Azeotropic Data (Part 1& 2), VCH Verlagsgesellschaft mbH.

    Google Scholar 

  • Gmehling J, Onken U, Arlt W, Grenzheuser P, Weidlich U and Kolbe B (1977–1984) Chemistry Data Series. Frankfurt a.M., DECHEMA.

    Google Scholar 

  • Gorak A (1995) Simulation thermischer Trennverfahren fluider Vielkomponentengemische. Prozesssimulation. Schuler H, Wiley-VCH: 349–408.

    Google Scholar 

  • Górak A and Kreul L (2004) Packung für Stoffaustausch-Kolonnen. EP.

    Google Scholar 

  • Górak A, Kreul L U and Skowronski M (1998) Strukturierte Mehrzweckpackung. Deutsches Patent 19701045 A1.

    Google Scholar 

  • Götze L and Bailer O (2000) “Katalysator-Sandwich-Reaktivdestillation mit einer neuen strukturierten Packung.” Chemie Technik 29(2): 42–45.

    Google Scholar 

  • Götze L, Bailer O, Moritz P and von Scala C (2000) “KATAPAK-SP: Baukastensystem für die Reaktivrektifikation.” Chemie Ingenieur Technik 72(9): 1053–1054.

    Article  Google Scholar 

  • Hangx G, Kwant G, Maessen H, Markusse A P and Urseanu M I (2001) Reaction Kinetics of the Esterification of Ethanol and Acetic Acid Towards Ethyl Acetate, Intelligent Column Internals for Reactive Separations (INTINT), Technical Report to the European Commission: http://www.cpi.umist.ac.uk/intint/NonConf_Doc.asp .

  • Hayden J G and O’Connell J P (1975) “A Generalized Method for Predicting Second Virial Coefficients.” Ind. Eng. Chem. Process Des. Dev. 14: 209–216.

    Article  CAS  Google Scholar 

  • Heijnen J H M, de Bruijn V G, van den Broeke L J P and Keurentjes J T F (2003) “Micellar catalysis for selective epoxidations of linear alkenes.” Chemical Engineering and Processing 42(3): 223–230.

    Article  CAS  Google Scholar 

  • Higler A, Krishna R and Taylor R (1999) “Nonequilibrium Cell Model for Multicomponent (Reactive) Separation Processes.” AiChE Journal 45(11):2357–2370.

    Article  CAS  Google Scholar 

  • Higler A, R. Krishna and Taylor R (2000) “Nonequilibrium Modeling of Reactive Distillation: A Dusty Fluid Model for Heterogeneously Catalysed Processes.” Ind.Eng. Chem. Res. 39: 1596–1607.

    Article  CAS  Google Scholar 

  • Hoffmann A and Górak A (2000) Methyl-Acetate via Catalytic Distillation: Characteristics of MULTIPAK and their Influence on the Process Performance. International Congress of Chemical and Process Engineering (CHISA). Prag.

    Google Scholar 

  • Hoffmann A, Noeres C and Górak A (2004) “Scale-Up of Reactive Distillation Columns with Catalytic Packings.” Chem. Eng. Process. 43: 383–395.

    Article  CAS  Google Scholar 

  • Huggins M L (1941) Chemical Phys. 9: 440.

    Article  CAS  Google Scholar 

  • Huggins M L (1942) J. Am. Chem. Soc. 64: 1712.

    Article  CAS  Google Scholar 

  • Illiuta I, Larachi F and Grandjean B P A (1999) “Residence Time, Mass Transfer and Back Mixing of the Liquid in Trickle Flow Reactors Containing Porous Particles.” Chem. Eng. Sci. 54: 4099–4109.

    Article  Google Scholar 

  • Jacobsson K, Pyhälathi A, Pakkanen S, Keskinen K and Aittamaa J (2001) Modeling of a Configuration Combining Distillation and Reaction in a Side Reactor. International Symposium on Multifunctional Reactors (ISMR-2), Nürnberg, Germany.

    Google Scholar 

  • Johnson K H and Dallas A B (1994) Catalytic Distillation Structure. US.

    Google Scholar 

  • Jones E M J (1985) Contact Structure for Use In Catalytic Distillation. US, Chemical Research & Licensing Company, Houston, TX.

    Google Scholar 

  • Judzis A (2004) Advances in Process Intensification through Multifunctional Reactor Engineering. Energy U S D o. 2005.

    Google Scholar 

  • Kenig E, Klöker M, Noeres C, Nijhuis T A, Beers A E W, Kapteijn F and Moulijn J A (2000) Detailed Rate-Based Model Including Extended Hydrodynamics Description (Deliverable 7), INTINT.

    Google Scholar 

  • Kenig E Y, Bäder H, Górak A, Beßling B, Adrian T and Schoenmakers H (2001) “Investigation of Ethyl Acetate Reactive Distillation Process.” Chem. Eng. Sci. 56: 6185–6193.

    Article  CAS  Google Scholar 

  • Kenig E Y, Górak A and Bart H-J (2004) Reactive Separations in Fluid Systems. Re-Engineering the Chemical Processing Plant: Process Intensification. Stankiewicz A a.Moulijn J A. New York, Marcel Dekker, Inc.: 309–377.

    Google Scholar 

  • Kenig E Y, Kloeker M, Egorov Y, Menter F and Górak A (2001) Towards Improvement of Reactive Separation Performance Using Computational Fluid Dynamics. ISMR-2, 2nd International Symposium on Multifunctional Reactors. Nuernberg.

    Google Scholar 

  • Kenig E Y, Kloeker M, Egorov Y, Menter F and Górak A (2001) “Towards Improvement of Reactive Separation Performance Using Computational Fluid Dynamics.” Chemie-Ingenieur-Technik 73(6): 773.

    Google Scholar 

  • Klöker M, Kenig E Y, Górak A, Egorov Y and Menter F (2003) Improved Design of Reactive Separation Internals via CFD and Process Simulation. ACHEMA 2003. Frankfurt / Main.

    Google Scholar 

  • Klöker M, Kenig E Y, Górak A, Franczek K, Salacki W and Orlikowski W (2003) Experimental and Theoretical Studies of the TAME Synthesis by Reactive Distillation. European Symposium on Computer Aided Process Engineering — 13, Lappeenranta, Finland, Elsevier Science B.V.

    Google Scholar 

  • Klöker M, Kenig E Y, Górak A, Markusse A P, Kwant G, Götze L and Moritz P (2002) Investigation of Different Column Configurations for the Ethyl Acetate Synthesis via Reactive Distillation. Distillation and Absorption, Baden Baden, Germany.

    Google Scholar 

  • Klöker M, Kenig E Y, Górak A, Markusse A P, Kwant G and Moritz P (2004) “Investigation of Different Column Configurations for the Ethyl Acetate Synthesis via Reactive Distillation.” Chem. Eng. Process. 43: 791–801.

    Article  CAS  Google Scholar 

  • Klöker M, Kenig E Y, Hoffmann A, Kreis P and Górak A (2005) “Rate-based modelling and simulation of reactive separations in gas/vapour-liquid systems.” Chemical Engineering and Processing 44: 617–629.

    Article  CAS  Google Scholar 

  • Klöker M, Kenig E Y, Piechota R, Burghoff S and Egorov Y (2004) “CFD-gestützte Untersuchungen von Hydrodynamik und Stofftransport in Katalysatorschüttungen.” Chem. Ing. Tech. 76: 236–242.

    Article  Google Scholar 

  • Klöker M, Kenig E Y, Piechota R, Burghoff S and Egorov Y (2005) “CFD-based Study on Hydrodynamics and Mass Transfer in Fixed Catalyst Beds.” Chemical Engineering and Technology 28(1): 31–36.

    Article  CAS  Google Scholar 

  • Kolena J, Lederer J, Moravek P, Hanika J, Smejkal Q and Skala D (1999) Zpusob vyroby etylacetatu a zarizeni k provadeni tohoto zpusobu (Process for the production of ethyl acetate and apparatus for performing the process, Cz PV 3635–99). Czech Republic.

    Google Scholar 

  • Kolodziej A, Jaroszynski M and Bylica I (2003) “Mass transfer and hydraulics for KATAPAK-S.” Chemical Engineering and Processing 43(3): 457–464.

    Article  CAS  Google Scholar 

  • Kolodziej A, Jaroszynski M, Salacki W, Orlikowski W, Fraczek K, Klöker M, Kenig E Y and Górak A (2004) “Catalytic Distillation for the TAME Synthesis with Structured Catalytic Packings.” Chem. Eng. Res. Des. 82: 175–184.

    Article  CAS  Google Scholar 

  • Kooijman H (1995) Dynamic Nonequilibrium Column Simulation. Chemical Engineering. Potsdam, N.Y., Clarkson University.

    Google Scholar 

  • Kreft A and Zuber A (1978) “On the physical meaning of the dispersion equation and its solutions for different initial and boundary conditions.” Chem. Eng. Sci. 33: 1471–1480.

    Article  CAS  Google Scholar 

  • Kreul L U, Górak A, Dittrich C and Barton P I (1998) “Dynamic Catalytic Distillation: Advanced Simulation and Experimental Validation.” Computers and Chemical Engineering 22(Supplement 1): S371–S378.

    Article  CAS  Google Scholar 

  • Krishna R and Standart G L (1979) “Mass and Energy Transfer in Multicomponent Systems.” Chem. Eng. Com. 3: 201.

    Article  CAS  Google Scholar 

  • Kunz U (1998) Entwicklung neuartiger Polymer / Träger — Ionenaustauscher als Katalysatoren für chemische Reaktionen in Füllkörperkolonnen. Clausthal — Zellerfeld, Papierflieger Verlag.

    Google Scholar 

  • Kunz U and Hoffmann U (1995) Perparation of Catalytic Polymer/Ceramic Ionexchange Packings for Reactive Distillation Columns. Preparation of Catalysts VI. Ponclet G, Elsevier Science B.V.: 299–308.

    Google Scholar 

  • Larachi F, Petre C F, Iliuta I and Grandjean B (2003) “Tailoring the pressure drop of structured packings through CFD simulations.” Chemical Engineering and Processing 42(7): 535–541.

    Article  CAS  Google Scholar 

  • Lebas E, Jullian S, Travers C, Capron P, Joly J-F and Thery M (1997) Process for the isomerisation of paraffins by reactive distillation (EP 000000787786A1), Inst. Francais du Petrol.

    Google Scholar 

  • Leet W A and Kulprathipanja S (2002) Reactive Separation Processes. Reactive Separation Processes. Kulprathipanja S. London, Taylor & Francis: 1–16.

    Google Scholar 

  • Linnekoski J A and Rihko-Struckmann L K (1999) “Simultaneous Isomerisation and Etherification of isoamylenes.” Ind. Eng. Chem. Res. 38: 4563–4570.

    Article  CAS  Google Scholar 

  • Loning S, Horst C and Hoffmann U (2000) “Theoretical investigations on the quaternary system n-butanol, butyl acetate, acetic acid and water.” Chemical Engineering & Technology 23(9): 789–794.

    Article  CAS  Google Scholar 

  • Luo H P and Xiao W D (2001) “A reactive distillation process for a cascade and azeotropic reaction system: Carbonylation of ethanol with dimethyl carbonate.” Chemical Engineering Science 56(2): 403–410.

    Article  CAS  Google Scholar 

  • Luo H P, Xiao W D and Zhu K H (2000) “Isobaric vapor-liquid equilibria of alkyl carbonates with alcohols.” Fluid Phase Equilibria 175(1–2): 91–105.

    Article  CAS  Google Scholar 

  • Luo H P, Zhou J H, Xiao W D and Zhu K H (2001) “Isobaric vapor-liquid equilibria of binary mixtures containing dimethyl carbonate under atmospheric pressure.” Journal of Chemical and Engineering Data 46(4): 842–845.

    Article  CAS  Google Scholar 

  • Luo H P, Zhou J H, Xiao W D and Zhu K H (2002) “CORRECTION-Isobaric Vapor-Liquid Equilibria of Binary Mixtures Containing Dimethyl Carbonate under Atmospheric Pressure.” J. Chem. Eng. Data 47: 113.

    Article  CAS  Google Scholar 

  • Mackowiak J (2003) Fluiddynamik von Füllkörpern und Packungen. Grundlagen der Kolonnenauslegung. Berlin Heidelberg, Springer.

    Google Scholar 

  • Mazzotti M N, B.; Gelosa, D.; Kruglov, A.; Morbidelli, M. (1997) “Kinetics of liquid-phase esterification catalyzed by acidic resins.” Ind. Eng. Chem. Res. 36: 3–10.

    Article  CAS  Google Scholar 

  • Michelsen M L (1994) “The axial dispersion model and orthogonal collocation.” Chem. Eng. Sci. 49: 3675–3676.

    Article  CAS  Google Scholar 

  • Mohl K-D, Kienle A and Hoffman U (1999) “Steady-state multiplicities in reactive distillation columns for the production of fuel ethers MTBE and TAME: theoretical analysis and experimental verification.” Chem. Eng. Sci. 54: 1029–1043.

    Article  CAS  Google Scholar 

  • Mohl K D, Kienle A, Sundmacher K and Gilles E D (2001) “A theoretical study of kinetic instabilities in catalytic distillation processes: influence of transport limitations inside the catalyst.” Chemical Engineering Science 56(18): 5239–5254.

    Article  CAS  Google Scholar 

  • Moritz P (2002) Product Information ‘Ethyl Acetate Production by Reactive Distillation’. Brochure of Sulzer Chemtech Ltd.

    Google Scholar 

  • Moritz P and Hasse H (1999) “Fluid Dynamics in Reative Distillation Packing Katapak-S.” Chem. Eng. Sci. 54: 1367–1374.

    Article  CAS  Google Scholar 

  • Nigam K D P, Illiuta I and Larachi F (2002) “Liquid Back-Mixing and Mass Transfer Effects in Trickle-Bed Reactors Filled with Porous Catalyst Particles.” Chem. Eng. Process. 41: 365–371.

    Article  CAS  Google Scholar 

  • Nijhuis T A, Kreutzer M T, A.C.J. R, Kapteijn F and Moulijn J A (2001) “Monolithic catalysts as efficient three-phase reactors.” Chemical Engineering Science 56: 823–829.

    Article  CAS  Google Scholar 

  • Nocca J L, Leonard J, Gaillard J F and Amigues P (1991) Apparatus for Reactive Distillation. US.

    Google Scholar 

  • Noeres C (2003) Catalytic Distillation: Dynamic Modelling, Simulation and Experimental Validation. Department of Biochemical and Chemical Engineering. Dortmund, University of Dortmund.

    Google Scholar 

  • Noeres C, Hoffmann A and Gorak A (2002) “Reactive distillation: Non-ideal flow behaviour of the liquid phase in structured catalytic packings.” Chemical Engineering Science 57(9): 1545–1549.

    Article  CAS  Google Scholar 

  • Noeres C, Kenig E Y and Górak A (2003) “Modelling of Reactive Separation Processes: Reactive Absorption and Reactive Distillation.” Chem. Eng. Process. 42: 157–178.

    Article  CAS  Google Scholar 

  • Nothnagel K H, Abrams D S and Prausnitz J M (1973) “Generalized Correlation for Fugacity Coefficients in Mixtures at Moderate Pressures.” Ind. Eng. Chem. Process Des. Dev. 12(1).

    Google Scholar 

  • Petre C F, Larachi F, Iliuta I and Grandjean P A (2003) “Pressure Drop Through Structured Packings: Breakdown into the Contributing Mechanisms by CFD modeling.” Chem. Eng. Sci. 58: 163–177.

    Article  CAS  Google Scholar 

  • Piironen M, Haario H and Turunen I (2001) “Modelling of Katapak Reactor for Hydrogenation of Anthraquinones.” Chem. Eng. Sci. 56: 859–864.

    Article  CAS  Google Scholar 

  • Pöpken T (2000) Reaktive Rektifikation unter besonderer Berücksichtigung der Reaktionskinetik am Beispiel von Veresterungsreaktionen. Oldenburg, University of Oldenburg.

    Google Scholar 

  • Pöpken T, Steinigeweg S and Gmehling J (2001) “Synthesis and Hydrolysis of Methyl Acetate by Reactive Distillation Using Structured Catalytic Packings: Experiments and Simulation.” Industrial Engineering Chemistry Research 40(6): 1566–1574.

    Article  CAS  Google Scholar 

  • Qi Z W, Sundmacher K, Stein E, Kienle A and Kolah A (2002) “Reactive separation of isobutene from C4 crack fractions by catalytic distillation processes.” Separation and Purification Technology 26(2–3): 147–163.

    Article  CAS  Google Scholar 

  • Reid R C, Prausnitz J M and Poling B E (1987) The Properties of Gases and Liquids. New York, McGraw-Hill.

    Google Scholar 

  • Richter J and Górak A (2004) Katalytische Rektifikation für ein System mit Folge-und Nebenreaktionen. DECHEMA/GVC-Jahrestagung. Karlsruhe.

    Google Scholar 

  • Rodrigues A, Canosa J, Dominguez A and Tojo J (2004) “Viscosities of dimethyl carbonate with alcohols at several temperatures UNIFAC-VISCO interaction parameters (-OCOO-/alcohol=.” Fluid Phase Equilibria 216: 167–174.

    Article  CAS  Google Scholar 

  • Rodriguez A, Canosa J, Dominguez A and Tojo J (2002) “Isobaric vapour-liquid equilibria of dimethyl carbonate with alkanes and cyclohexane at 101.3 kPa.” Fluid Phase Equilibria 198(1): 95–109.

    Article  CAS  Google Scholar 

  • Rodriguez A, Canosa J, Dominguez A and Tojo J (2003) “Isobaric phase equilibria of diethyl carbonate with five alcohols at 101.3 kPa.” Journal of Chemical and Engineering Data 48(1): 86–91.

    Article  CAS  Google Scholar 

  • Schembecker G and Tlatlik S (2003) “Process synthesis for reactive separations.” Chemical Engineering and Processing 42(3): 179–189.

    Article  CAS  Google Scholar 

  • Schildhauer T J, Kapteijn F and Moulijn J A (2005) “Reactive Stripping in Pilot Scale Monolith Reactors-Application to Esterification.” Chemical Engineering and Processing 44(6): 695–699.

    Article  CAS  Google Scholar 

  • Schmitt M, Hasse H, Althaus K, Schoenmakers H, Götze L and Moritz P (2004) “Synthesis of n-Hexyl Acetate by Reactive Distillation.” Chem. Eng. Process. 43: 397–409.

    Article  CAS  Google Scholar 

  • Schneider R, Noeres C, Kreul L U and Gorak A (2001) “Dynamic modeling and simulation of reactive batch distillation.” Computers & Chemical Engineering 25(1): 169–176.

    Article  CAS  Google Scholar 

  • Schoenmakers H G and Bessling B (2003) “Reactive and catalytic distillation from an industrial perspective.” Chemical Engineering and Processing 42(3): 145–155.

    Article  CAS  Google Scholar 

  • Schuchardt U, Sercheli R and Vargas R M (1998) “Transesterification of vegetable oils: a review.” Journal of the Brazilian Chemical Society 9(3): 199–210.

    Article  CAS  Google Scholar 

  • Seader J D and Henley E J (2005) Separation Process Principles, John Wiley & Sons.

    Google Scholar 

  • Shah Y T, Stiegel G J and Sharma M M (1978) “Backmixing in Gas-Liquid Reactors.” AIChE Journal 24(24): 369–400.

    Article  CAS  Google Scholar 

  • Shaikh A A G and Sivaram S (1996) “Organic carbonates.” Chemical Reviews 96(3): 951–976.

    Article  CAS  Google Scholar 

  • Shelden R and Stringaro J-P (1995) Vorrichtung zur Durchführung katalysierter Reaktionen (EP 0396650B1). European Union.

    Google Scholar 

  • Sheldon R A and van Bekkum H (2001) Fine Chemicals through Heterogeneous Catalysis. Weinheim, VCH.

    Google Scholar 

  • Shoemaker J D and Jones J, E.M. (1987) “Cumene by Catalytic Distillation.” Hydrocarbon Processing(June): 57–58.

    Google Scholar 

  • Smith L A J (1984) Catalytic distillation structure. U.S.A.

    Google Scholar 

  • Song W, Venimadhavan G, Manning J M, Malone M F and Doherty M F (1998) “Measurement of Residue Curve Maps and Heterogeneous Kinetics in Methyl Acetate Synthesis.” Ind. End. Chem. Res. 37(5): 1917–1928.

    Article  CAS  Google Scholar 

  • Sorel E (1893) La rectification de l’alcool. Paris, Gauthier-Villars et fils.

    Google Scholar 

  • SRI (1999) Chemical Economics Handbook, SRI International.

    Google Scholar 

  • Steinigeweg S (2003) Zur Entwicklung von Reaktivrektifikationsprozessen am Beispiel gleichgewichtslimitierter Reaktionen. Oldenburg, Car-von-Ossietzky-Universität.

    Google Scholar 

  • Steinigeweg S and Gmehling J (2002) “n-Butyl Acetate Synthesis via Reactive Distillation: Thermodynamic Aspects, Reaction Kinetics, Pilot-Plant Experiments, and Simulation Studies.” Ind.Eng. Chem. Res. 41: 5483–5490.

    Article  CAS  Google Scholar 

  • Steinigeweg S and Gmehling J (2003) “Transesterification processes by combination of reactive distillation and pervaporation.” Chemical Engineering and Processing 43(3): 447–456.

    Article  CAS  Google Scholar 

  • Stewart W E and Prober R (1964) “Matrix Calculation of Multicomponent Mass Transfer in Isothermal Systems.” Ind. Eng. Chem. Fundam. 4: 224.

    Article  Google Scholar 

  • Stichlmair J and Frey T (1998) “Prozesse der Reaktivdestillation.” Chemie Ingenieur Technik 70(12): 1507–1516.

    Article  CAS  Google Scholar 

  • Stitt E H (2001) “Reactive Distillation-A Panacea or a Solution Looking for a Problem? A Case Study Based Evaluation.” Chem. Ing. Tech. 73(6): 767.

    Article  Google Scholar 

  • Stitt E H (2003) Multifunctional Reactors? Up to a Point Lord Copper. International Symposium on Multifunctional Reactors (ISMR-3) / Colloquium on Chemical Reaction Engineering (CCRE-18), Bath, U.K.

    Google Scholar 

  • Sulzer (2000) Produktinformation KATAPAK.

    Google Scholar 

  • Taylor R and Krishna R (1993) Multicomponent Mass Transfer. New York, John Wiley & Sons, Inc.

    Google Scholar 

  • Taylor R and Krishna R (2000) “Modelling reactive distillation.” Chem. Eng. Sci.(55): 5183–5229.

    Article  CAS  Google Scholar 

  • Taylor R, Krishna R and Kooijman H A (2003) “Real World Modeling of Distillation.” Chemical Engineering Progress 99(7): 28–39.

    CAS  Google Scholar 

  • Thiel C (1997) Modellbildung, Simulation, Design und experimentelle Validierung von heterogen katalysierten Reaktivdestillationsprozessen zur Synthese der Kraftstoffether MTBE, ETBE und TAME. Fakultät für Bergbau, Hüttenwesen und Maschinenwesen. Clausthal-Zellerfeld, Technische Universität Clausthal: 121.

    Google Scholar 

  • Tlatlik S (2004) Beitrag zur Prozesssynthese integrierter Reaktions-und Trennoperationen. Department of Biochemical and Chemical Engineering. Dortmund, University of Dortmund.

    Google Scholar 

  • Toor H L (1964) “Prediction of Efficiences and Mass Transfer on a Stage with Multicomponent Systems.” AIChE J. 10: 545.

    Article  Google Scholar 

  • Toor H L (1964) “Solution of the Linearized Equations of Multicomponent Mass Transfer.” AICHE Journal 10: 545–547.

    Article  Google Scholar 

  • Towler G T and Frey S J (2001) Reactive Distillation. Reactive Separation Processes. Kulprathipanja S. London, Taylor and Francis.

    Google Scholar 

  • Tundo P (2001) “New developments in dimethyl carbonate chemistry.” Pure and Applied Chemistry 73(7): 1117–1124.

    Article  CAS  Google Scholar 

  • Tundo P and Selva M (2002) “The chemistry of dimethyl carbonate.” Accounts of Chemical Research 35(9): 706–716.

    Article  CAS  Google Scholar 

  • Ullmann (1985) Ullmann’s Encyclopedia of Industrial Chemistry, 5th edition edition. Weinheim, Wiley-VCH.

    Google Scholar 

  • van Baten J M and Krishna R (2002) “Gas and Liquid Phase Mass Transfer within KATAPAK-S Structures studied using CFD Simulations.” Chem. Eng. Sci. 57: 1531–1536.

    Article  Google Scholar 

  • van Hasselt B W, Calis H P A, Sie S T and van den Bleek C M (1999) “Liquid hold-up in the three-levels-of-porosity reactor.” Chem. Ing. Sci. 54: 1405–1411.

    Article  Google Scholar 

  • van Swaaij W P M, Charpentier J C and Villermaux J (1969) “Residence Time Distribution in the Liquid Phase of Trickle Flow in Packed Columns.” Chem. Eng. Sci. 24: 1083–1095.

    Article  Google Scholar 

  • Wang S-J, Wong D S H and Lee E-K (2003) “Control of a Reactive Distillation Column in the Kinetic Regime for the Synthesis of n-Butyl Acetate.” Ind. Eng. Chem. Res. 42: 5182–5194.

    Article  CAS  Google Scholar 

  • Weitkamp J, Hunger M and Rymsa U (2001) “Base catalysis on microporous and mesoporous materials: recent progress and perspectives.” Microporous and Mesoporous Materials 48(1–3): 255–270.

    Article  CAS  Google Scholar 

  • Wesselingh J A (1990) Mass Transfer. Chichester, West Sussex (England), Ellis Horwood.

    Google Scholar 

  • Wesselingh J A and Krishna R (1990) Mass Transfer, Ellis Horwood.

    Google Scholar 

  • Wu K-C and Lin C-T (1999) Catalytic processes for the preparation of acetic esters. U.S. 5,998,658.

    Google Scholar 

  • Yeoman N, Pinaire R, Ulowetz M A, Nace T P and Furese D A (1994) Method and Apparatus for Concurrent Reaction with Distillation. WO 94/08679.

    Google Scholar 

  • Yuxiang Z and Xien X (1992) “Study on catalytic distillation processes-pt. II: simulation of catalytic distillation processes (quasi-homogeneous and rate-based model).” Trans. IChemE 70: 465–470.

    Google Scholar 

  • Zheng Y, Flora T.T. Ng and Rempel G L (2001) “Catalitic Distillation: A Three-Phase Nonequilibrium Model for the Simulation of the Aldol Condensation of Acetone.” Ind.Eng. Chem. Res. 40: 5342–5349.

    Article  CAS  Google Scholar 

  • Zheng Y, Rempel G L and Ng F T T (2003) “Modelling of the Catalytic Distillation Process for the Synthesis of Ethyl Cellosolve Using a Three-Phase Nonequilibrium Model.” Int. J. Chem. Reac. Eng. 1: 15.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Richter, J., Górak, A., Kenig, E.Y. (2006). Catalytic distillation. In: Integrated Reaction and Separation Operations. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30304-9_3

Download citation

Publish with us

Policies and ethics