Advertisement

Multicomponent Assemblies Including Long DNA and Nanoparticles — An Answer for the Integration Problem?

  • Andreas Wolff
  • Andrea Csaki
  • Wolfgang Fritzsche
Part of the Natural Computing Series book series (NCS)

5 Concluding Remarks

Since we have been working on the integration of long DNA and nanoparticles, we have seen a great potential for these methods in new approaches to electronics. However, we have to point out that there remains a lot of work to be done. All the steps described here are well established as separate procedures. However, the combination of these steps into standard procedures has not yet been established. First of all, the problem of the parallelization of the integration of the molecules, which will be very important for commercial or forward-looking applications, has not been satisfactory solved. This is closely connected to the problem of suitable surfaces and both their modification and their functionalization. We have been working a lot on the development of simple, homogeneous surface modifications, especially on microstructured chips. But even the simple method of a drying droplet is not completely understood today. So one has in a large number of samples only a few with DNA in the desired places, leading to problems of reproducibility and throughput, and a series of established steps will not always work with the same precision and efficiency as does every separate step.

“There is plenty of room at the bottom”, but there is also even more work there.

Keywords

Gold Nanoparticles Physical Review Letter Apply Physic Letter Silver Acetate Copper Nanowires 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.F. Allemand, D. Bensimon, L. Jullien, A. Bensimon, V. Croquette, pH-dependent specific binding and combing of DNA, Biophys. J., 73,4:2064–2070, 1997.Google Scholar
  2. 2.
    A.P. Alivisatos, K.P. Johnsson, X. Peng, T.E. Wilson, C.J. Loweth, M.P. Bruchez Jr., P.G. Schultz, Organization of nanocrystal molecules using DNA, Nature, 382,6592:609–611, 1996.CrossRefGoogle Scholar
  3. 3.
    R.P. Andres, T. Bein, M. Dorogi, S. Feng, J.I. Henderson, C.P. Kubiak, W. Mahoney, R.G. Osifchin, R. Reifenberger, Coulomb staircase at room temperature in a self-assembled molecular nanostructure, Science, 272:1323–1325 1996.Google Scholar
  4. 4.
    D.P. Bancroft, L.A. Christopher L.J. Stephen, Platinum-195 NMR kinetic and mechanistic studies of cis-and trans-diamminedichloroplatinum(II) binding to DNA, J. Am. Chem. Soc, 112,19:6860–6871, 1990.CrossRefGoogle Scholar
  5. 5.
    A. Bardea, E. Katz, A.F. Buckmann, I. Willner, NAD+-dependent enzyme electrodes: electrical contact of cofactor-dependent enzymes and electrodes, J. Am. Chem. Soc, 119,39:9114–9119, 1997.CrossRefGoogle Scholar
  6. 6.
    A. Bardea, E. Katz, I. Willner, Probing antigen-antibody interactions on electrode supports by the biocatalyzed precipitation of an insoluble product, Electroanalysis, 12,14:1097–1106, 2000.CrossRefGoogle Scholar
  7. 7.
    A. Bensimon, A. Simon, A. Chiffaudel, V. Croquette, F. Heslot, D. Bensimon, Alignment and sensitive detection of DNA by a moving interface, Science, 265:2096–2098, 1994.Google Scholar
  8. 8.
    D. Bensimon, A.J. Simon, V. Croquette, A. Bensimon, Stretching DNA with a receding meniscus: experiments and models, Physical Review Letters, 7423:4754–4757, 1995.CrossRefGoogle Scholar
  9. 9.
    G.B. Birrell, D.L. Habliston, K.K. Hedberg, O.H. Griffith, Silver-enhanced colloidal gold as a cell surface marker for photoelectron microscopy, J. Histochem. Cytochem., 34,3:339–345, 1986.Google Scholar
  10. 10.
    M. Bockrath, N. Markovic, A. Shepard, M. Tinkham, L. Gurevich, L.P. Kouwenhoven, M.W. Wu, Mingshaw, L.L. Sohn, Scanned conductance microscopy of carbon nanotubes and λ-DNA, Nano Letters, 2,3:187–190, 2002.CrossRefGoogle Scholar
  11. 11.
    E. Braun, Y. Eichen, U. Sivan, G. Ben-Yoseph, DNA-templated assembly and electrode attachment of a conducting silver wire, Nature, 391:775–778, 1998.CrossRefGoogle Scholar
  12. 12.
    L. Cai, H. Tabata, Hitoshi, T. Kawai, Self-assembled DNA networks and their electrical conductivity, Applied Physics Letters, 77,19:3105–3106, 2000.CrossRefGoogle Scholar
  13. 13.
    W. Cai, H. Aburatani, V.P. Jr. Stanton, D.E. Housman, Y.K. Wang, D.C. Schwartz, Ordered restriction endonuclease maps of yeast artificial chromosomes created by optical mapping on surfaces, Proc Natl Acad Sci USA, 92,11:5164–5168, 1995.CrossRefGoogle Scholar
  14. 14.
    W. Cai, J. Jing, B. Irvin, L. Ohler, E. Rose, H. Shizuya, U.J. Kim, M. Simon, T. Anantharaman, B. Mishra, D.C. Schwartz, High-resolution restriction maps of bacterial artificial chromosomes constructed by optical mapping, Proc. Natl. Acad. Sci. USA, 95,7:3390–3395, 1998.CrossRefGoogle Scholar
  15. 15.
    D.I. Cherny, A. Fourcade, F. Svinarchuk, P.E. Nielsen, C. Malvy, E. Delain, Analysis of various sequence-specific triplexes by electron and atomic force microscopies, Biophys. J., 74,2:1015–1023, 1998.Google Scholar
  16. 16.
    J.L. Coffer, S.R. Bigham, X. Li, R.F. Pinizzotto, Y.G. Rho, R.M. Pirtle, I.L. Pirtle, Dictation of the shape of mesoscale semiconductor nanoparticle assemblies by plasmid DNA, Applied Physics Letters, 96,25:3851–3853, 1996.CrossRefGoogle Scholar
  17. 17.
    L.M. Demers, C.A. Mirkin, R.C. Mucic, R.A. Reynolds, R.L. Letsinger, R. Elghanian, G. Viswanadham, A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles, Anal. Chem., 72,22:5535–5341, 2000.CrossRefGoogle Scholar
  18. 18.
    P.J. de Pablo, F. Moreno-Herrero, Colchero, J. Gomez Herrero, P. Herrero, A.M. Bar, P. Ordejn, J.M. Soler, E. Artacho, Absence of dc-conductivity in λ-DNA, Physical review letters, 85,23:4992–4996, 2000.CrossRefGoogle Scholar
  19. 19.
    J. Duguid, V.A. Bloomfield, J. Benevides, G.J. Thomas Jr., Raman spectroscopy of DNA-metal complexes. I. Interactions and conformational effects of the divalent cations: Mg, Ca, Sr, Ba, Mn, Co, Ni, Cu, Pd, and Cd, Biophys. J., 65,5:1916–1928, 1993.CrossRefGoogle Scholar
  20. 20.
    C. Dwyer, V. Johri, M. Cheung, J. Patwardhan, A. Lebeck, D. Sorin, Design tools for a DNA-guided self-assembling carbon nanotube technology, Nanotechnology, 15,9:1240–1245(6), 2004.CrossRefGoogle Scholar
  21. 21.
    C. Dwyer, L. Vicci, J. Poulton, D. Erie, R. Superfine, S. Washburn, R.M. Taylor II, The design of DNA self-assembled computing circuitry, IEEE Transaction on Very Large Scale Integration (VLSI) Sytems, 12: 1214–1220, 2004.CrossRefGoogle Scholar
  22. 22.
    Y. Eichen, E. Braun, U. Sivan, G. Ben-Yoseph, Self-assembly of nanoelectronic components and circuits using biological templates, Acta Polym., 49:663–670, 1998.CrossRefGoogle Scholar
  23. 23.
    R. Elghanian, J.J. Storhoff, R.C. Mucic, R.L. Letsinger, C.A. Mirkin, Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles, Science, 277,5329:1078–1081, 1997.CrossRefGoogle Scholar
  24. 24.
    Y. Fang, T.S. Spisz, T. Wiltshire, N.P. D’Costa, I.N. Bankman, R.H. Reewes, J.H. Hoh, Solid-state DNA sizing by atomic force microscopy, Analytical Chemistry, 70,10:2123–2129, 1998.CrossRefGoogle Scholar
  25. 25.
    H.-W. Fink, Ch. Schneberger, Electrical conduction through DNA molecules, Nature, 398:407–410, 1999.CrossRefGoogle Scholar
  26. 26.
    W.E. Ford, O. Harnack, A. Yasuda, J.M. Wessels, Platinated DNA as precursors to templated chains of metal nanoparticles, Advanced Materials, 13,23:1793–1798, 2001.CrossRefGoogle Scholar
  27. 27.
    L.A. Gearheart, H.J. Ploehn, C.J. Murphy, Oligonucleotide adsorption to gold nanoparticles: a surface-enhanced raman spectroscopy study of intrinsically bent DNA, J. Phys. Chem. B, 105,50:12609–12615, 2001.CrossRefGoogle Scholar
  28. 28.
    M.W. Grinstaff, How do charges travel through DNA? An update on a current debate, Angew. Chem. Int. Ed. Engl., 38,24:3629–3635, 1999.CrossRefGoogle Scholar
  29. 29.
    Q. Gu, C. Cheng, D.T. Haynie, Cobalt metallization of DNA: toward magnetic nanowires, Nanotechnology, 16,8:1358–1363, 2005.CrossRefGoogle Scholar
  30. 30.
    Z. Gueroui, C. Place, E. Freyssingeas, B. Berge, Observation by fluorescence microscopy of transcription on single combed DNA, Proc. Nat. Acad. Sci., USA, 99,9:6005–6010, 2002CrossRefGoogle Scholar
  31. 31.
    Z. Guo, P.J. Sadler, S.C. Tsang, Immobilization and visualization of DNA and proteins on carbon nanotubes, Advanced Materials, 10,9:701–703, 1998.CrossRefGoogle Scholar
  32. 32.
    G.W. Hacker, G. Danscher, A.H. Graf, G. Bernatzky, A. Schiechl, L. Grimelius, The use of silver acetate autometallography in the detection of catalytic tissue metals and colloidal gold particles bound to macromolecules, Prog. Histochem. Cytochem., 23,1–4:286–90, 1991.Google Scholar
  33. 33.
    M. Hazani, R. Naaman, F. Hennrich, M.M. Kappes, Confocal fluorescence imaging of DNA-functionalized carbon nanotubes, Nano Letters, 3,2:153–155, 2003.CrossRefGoogle Scholar
  34. 34.
    A. Heller, Electrical connection of enzyme redox centers to electrodes, J. Phys. Chem., 96:3579–3587, 1992.CrossRefGoogle Scholar
  35. 35.
    H.H.Q. Heng, J. Squire, L. Tsui, High-resolution mapping of mammalian genes by in situ hybridization to free chromatin, Proc. Natl. Acad. Sci. USA, 89,20:9509–9513, 1992.CrossRefGoogle Scholar
  36. 36.
    R. Holzel, N. Gajovic-Eichelmann, F.F. Bier, Directed immobilization of nucleic acids at ultramicroelectrodes using a novel electro-deposited polymer, Biosens Bioelectron., 19,5:417–422, 2003.CrossRefGoogle Scholar
  37. 37.
    C.S. Holgate, P. Jackson, P.N. Cowen, C.C. Bird, Immunogold-silver staining: new method of immunostaining with enhanced sensitivity, J. Histochem. Cytochem., 31,7:938–944, 1983.Google Scholar
  38. 38.
    R.E. Holmlin, P.J. Dandliker, J.K. Barton, Charge transfer through the DNA base stack, Angew. Chem. Int. Ed. Engl., 36,24:2714–2730, 1997.CrossRefGoogle Scholar
  39. 39.
    J. Jing, et al., Automated high resolution optical mapping using arrayed, fluid-fixed DNA molecules, Proc. Natl. Acad. Sci., USA, 95,14:8046–51, 1998.CrossRefGoogle Scholar
  40. 40.
    K. Keren, R.S. Berman, E. Braun, Patterned DNA metallization by sequence-specific localization of a reducing agent, Nano Letters, 4,2:323–326, 2004.CrossRefGoogle Scholar
  41. 41.
    K. Keren, R.S. Berman, E. Buchstab, U. Sivan, E. Braun, DNA-templated carbon nanotube field-effect transistor, Science, 302,5649:1380–1382, 2003.CrossRefGoogle Scholar
  42. 42.
    K. Keren, M. Krueger, R. Gilad, G. Ben-Yoseph, U. Sivan, E. Braun, Sequence-specific molecular lithography on single DNA molecules, Science, 297,5578:72–75, 2002.CrossRefGoogle Scholar
  43. 43.
    D.L. Klein, R. Roth, A.K. Lim, A.P. Alivisatos, P.L. McEuen, A single-electron transistor made from a cadmium selenide nanocrystal, Nature, 389,6652:699–701, 1997.CrossRefGoogle Scholar
  44. 44.
    D.L. Klein, P.L. McEuen, J.E.B. Katari, R. Roth, A.P. Alivisatos, An approach to electrical studies of single nanocrystals, Applied Physics Letters, 68,18:2574–2576, 1996.CrossRefGoogle Scholar
  45. 45.
    A. Kumar et al., linear superclusters of colloidal gold particles by electrostatic assembly on DNA templates, Advanced Materials, 13,5:341–344, 2001.CrossRefGoogle Scholar
  46. 46.
    J.W. Li et al., A convenient method of aligning large DNA molecules on bare mica surfaces for atomic force microscopy, Nucleic Acid Research, 26,20:4785–4786, 1998.CrossRefGoogle Scholar
  47. 47.
    B. Lippert, Cisplatin: Chemistry and Biochemistry of a Leading Anticancer Drug, VCH, Weinheim, 1999.Google Scholar
  48. 48.
    J. Liu, M. Gomez-Kaifer, A.E. Kaifer, Switchable molecular devices: from rotaxanes to nanoparticles, Structure and Bonding, 99:141–162, 2001.CrossRefGoogle Scholar
  49. 49.
    Y. Liu, W. Meyer-Zaika, S. Franzka, G. Schmid, M. Tsoli, H. Kuhn, Gold-cluster degradation by the transition of B-DNA into A-DNA and the formation of nanowires, Angew. Chem. Int. Ed. Engl., 42,25:2853–2857, 2003.CrossRefGoogle Scholar
  50. 50.
    C.J. Loweth, W.B. Caldwell, X. Peng, A.P. Alivisatos, P.G. Schultz, DNA-based assembly of gold nanocrystals, Angew. Chem. Int. Ed. Engl., 38,12:1808–1812, 1999.CrossRefGoogle Scholar
  51. 51.
    Y. Maeda, H. Tabata, T. Kawai, Two-dimensional assembly of gold nanoparticles with a DNA network template, Applied Physics Letters, 79,8:1181–1183, 2001.CrossRefGoogle Scholar
  52. 52.
    G. Maubach, A. Csaki, R. Seidel, M. Mertig, W. Pombe, D. Born, W. Fritzsche, Controlled positioning of one individual DNA molecule in an electrode setup based on self-assembly and microstructuring, Nanotechnology, 14:546–550, 2003.CrossRefGoogle Scholar
  53. 53.
    G. Maubach, M. Fritzsche, Precise positioning of individual DNA structures in electrode gaps by self-organization onto guiding microstructures, Nano Letters, 4,4:607–611, 2004.CrossRefGoogle Scholar
  54. 54.
    G. Maubach, D. Born, A. Csaki, W. Fritzsche, Parallel fabrication of DNA-aligned metal nanostructures in microelectrode gaps by a self-organization process, Small, 6:619–624, 2005.CrossRefGoogle Scholar
  55. 55.
    J. Mbindyo, B.D. Reiss, B.R. Martin, C.D. Keating, M.J. Natan, T. E. Mallouk, DNA-directed assembly of gold nanowires on complementary surfaces, Advanced Materials, 13,4:249–254, 2001.CrossRefGoogle Scholar
  56. 56.
    E. Meggers, M.E. Michel-Beyerle, B. Giese, Sequence dependent long range hole transport in DNA, J. Am. Chem. Soc., 120,49:12950–12955, 1998.CrossRefGoogle Scholar
  57. 57.
    M. Mertig, L.C. Ciacchi, R. Seidel, W. Pompe, A. deVita, DNA as a selective metallization template, Nano Letters, 2,8:841–844, 2002.CrossRefGoogle Scholar
  58. 58.
    M. Mertig, R. Seidel, L.C. Ciacchi, W. Pombe, Nucleation and growth of metal clusters on a DNA template, CP633, Structural and Electronic Properties of Molecular Nanostructures, edited by H. Kuzmany et al., 2002 American Institute of Physics 2002.Google Scholar
  59. 59.
    M. Mertig, R. Kirsch, W. Pompe, Biomolecular approach to nanotube fabrication, Applied Physics A, 66:723–727, 1998.CrossRefGoogle Scholar
  60. 60.
    X. Michalet et al., Dynamic molecular combing: stretching the whole human genome for high-resolution studies, Science, 277,5331:1518–23, 1997.CrossRefGoogle Scholar
  61. 61.
    C.A. Mirkin, T.A. Taton, Semiconductors meet biology, Nature, 405,6787:626–627, 2000.CrossRefGoogle Scholar
  62. 62.
    C.A. Mirkin, R.L. Letsinger, R.C. Mucic, J.J. Storhoff, A DNA-based method for rationally assembling nanoparticles into macroscopic materials, Nature, 382,6592:607–609, 1996.CrossRefGoogle Scholar
  63. 63.
    C.F. Monson, A.T. Wooley, DNA-templated construction of copper nanowires, Nano Letters, 3,3:359–363, 2003.CrossRefGoogle Scholar
  64. 64.
    C.M. Niemeyer, Progress in “engineering up” nanotechnology devices utilizing DNA as a construction material, Applied Physics Letters, 68:119–124, 1999.Google Scholar
  65. 65.
    C.M. Niemeyer, Self-assembled nanostructures based on DNA: towards the development of nanobiotechnology, Curr. Opin. Chem. Biol., 4,6:609–618, 2000.CrossRefGoogle Scholar
  66. 66.
    Y. Okahata, T. Kobayashi, K. Tanaka, M. Shimomura, Anisotropic electric conductivity in an aligned DNA cast film, Journal of the American Chemical Society, 120:6165–6166, 1998.CrossRefGoogle Scholar
  67. 67.
    G.B. Onoa, G. Cervantes, V. Moreno, M.J. Prieto, Study of the interaction of DNA with cisplatin and other Pd(II) and Pt(II) complexes by atomic force microscopy, Nucleic Acids Res., 26,6:1473–80, 1998.CrossRefGoogle Scholar
  68. 68.
    A.O. Orlov, I. Amlani, G.H. Bernstein, C.S. Lent, G.L. Snider, Realization of a functional cell for quantum-dot cellular automata, Science, 277:928–930, 1997.CrossRefGoogle Scholar
  69. 69.
    K. Otobe, T. Ohtani, Behavior of DNA fibers stretched by precise meniscus motion control, Nucleic Acids Res., 29,22:E109, 2001.CrossRefGoogle Scholar
  70. 70.
    R,E. Palmer, Q. Guo, Imaging thin films of organic molecules with the scanning tunnelling microscope, Physical Chemistry Chemical Physics, 4,18:4275–4284, 2002.CrossRefGoogle Scholar
  71. 71.
    V. Pardo-Yissar, E. Katz, I. Willner, A.B. Kotlyar, C. Sanders, H. Lill, Biomaterial engineered electrodes for bioelectronics, Faraday Discuss, 116,116:119–34; discussion 171–90, 2000.CrossRefGoogle Scholar
  72. 72.
    I. Parra, B. Windle, High resolution visual mapping of stretched DNA by fluorescent hybridization, Nat. Genet., 5,1:17–21, 1993.CrossRefGoogle Scholar
  73. 73.
    F. Patolsky, E. Katz, I. Willner, Amplified DNA detection by electrogenerated biochemiluminescence and by the catalyzed precipitation of an insoluble product on electrodes in the presence of the doxorubicin intercalator, Angew. Chem. Int. Ed. Engl., 41,18:3398–402, 2002.CrossRefGoogle Scholar
  74. 74.
    F. Patolsky, A. Lichtenstein, I. Willner, Detection of single-base DNA mutations by enzyme-amplified electronic transduction, Nat. Biotechnol., 19,3:253–7, 2001.CrossRefGoogle Scholar
  75. 75.
    T.T. Perkins, S.R. Quake, D.E. Smith, S. Chu, Relaxation of a single DNA molecule observed by optical microscopy, Science, 264,5160:822–826, 1994.Google Scholar
  76. 76.
    T.T. Perkins, D.E. Smith, S. Chu, Direct observation of tube-like motion of a single polymer chain, Science, 264,5160:819–822, 1994.Google Scholar
  77. 77.
    A. Prokop, Bioartificial organs in the twenty-first century: nanobiological devices, Annals of the New York Acad. Sci., 944:472–90, 2001.CrossRefGoogle Scholar
  78. 78.
    J. Richter, Metallization of DNA, Physica E, 16,2:157–173, 2003.CrossRefGoogle Scholar
  79. 79.
    J. Richter, M. Mertig, W. Pompe, I. Monch, H.K. Schackert, Construction of highly conductive nanowires on a DNA template, Applied Physics Letters, 78,4:536–539, 2001.CrossRefGoogle Scholar
  80. 80.
    J. Richter et al., Nanoscale palladium metallization of DNA, Advanced Materials, 12,7:507–510, 2000.CrossRefGoogle Scholar
  81. 81.
    G. Schmid, J.S. Bradley, Clusters and Colloids, Wiley, 1994.Google Scholar
  82. 82.
    N.C. Seeman, DNA nanotechnology: novel DNA constructions, Annu. Rev. Biophys. Biomol. Struct., 27:225–48, 1998.CrossRefGoogle Scholar
  83. 83.
    N.C. Seeman, DNA engineering and its application to nanotechnology, Trends Biotechnol, 17,11:437–43, 1999.CrossRefGoogle Scholar
  84. 84.
    N.C. Seeman, DNA nanotechnology, Materials Today, 6 Pages 7:24–30, 2003.CrossRefGoogle Scholar
  85. 85.
    W.L. Shaiu, D.D. Larson, J. Vesenka, E. Henderson, Atomic force microscopy of oriented linear DNA molecules labeled with 5nm gold spheres, Nucleic Acids Res., 21,1:99–103, 1993.Google Scholar
  86. 86.
    S.B. Smith, L. Finzi, C. Bustamante, Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads, Science, 258,5085:1122–1226, 1992.Google Scholar
  87. 87.
    R.-I. Stefan, J.F. van Staden, H.Y. Aboul-Enein, Immunosensors in clinical analysis, Fresenius’ Journal of Analytical Chemistry, 366, 6–7, 2000.Google Scholar
  88. 88.
    A.J. Storm, J. van Noort, S. de Vries, C. Dekker, Insulating behavior for DNA molecules between nanoelectrodes at the 100 nm length scale, Applied Physics Letters, 79,23:3881–3883, 2001.CrossRefGoogle Scholar
  89. 89.
    K. Tanaka, Y. Okahata, A DNA-lipid complex in organic media and formation of an aligned cast film, J. Am. Chem. Soc., 118,44:10679–10683, 1996.CrossRefGoogle Scholar
  90. 90.
    T. Torimoto, M. Yamashita, S. Kuwabata, T. Sakata, H. Mori, H. Yoneyama, Hiroshi, Fabrication of CdS nanoparticle chains along DNA double strands, J. Phys. Chem. B, 103,42:8799–8803, 1999.CrossRefGoogle Scholar
  91. 91.
    P. Tran, B. Alavi, G. Gruner, Charge transport along the λ-DNA double helix, Physical Review Letters, 85,7:15641567, 2000.CrossRefGoogle Scholar
  92. 92.
    T. Vallant et al., Formation of self-assembled octadecylsiloxane monolayers on mica and silicon surfaces studied by atomic force microscopy and infrared spectroscopy, Physical Chemistry B, 102:7190–7197, 1998.CrossRefGoogle Scholar
  93. 93.
    G. Wang, R.W. Murray, Controlled assembly of monolayer-protected gold clusters by dissolved DNA, Nano Letters, 4,1:95–101, 2004.CrossRefGoogle Scholar
  94. 94.
    J. Wang, Towards genoelectronics: electrochemical biosensing of DNA hybridization, Chemistry-A European Journal, 5,6:1681–1685, 1999.CrossRefGoogle Scholar
  95. 95.
    M.G. Warner, J.E. Hutchison, Linear assemblies of nanoparticles electrostatically organized on DNA scaffolds, Nature Materials, 2,4:272–7, 2003.CrossRefGoogle Scholar
  96. 96.
    A. Warsinke, A. Benkert, F.W. Scheller, Electrochemical immunoassays, Fresenius’ Journal of Analytical Chemistry, 366,6–7:622–634, 2000.Google Scholar
  97. 97.
    M. Washizu, O. Kurosawa, Electrostatic manipulation of DNA in microfabricated structures, IEEE Transactions on Industrial Applications, 26,6:1165–1172, 1990.CrossRefGoogle Scholar
  98. 98.
    H.U. Weier et al., Quantitative DNA fiber mapping, Human Molecular Genetics, 4,10:1903–1910, 1995.Google Scholar
  99. 99.
    Y. Weizmann, F. Patolsky, I. Willner, Amplified detection of DNA and analysis of single-base mismatches by the catalyzed deposition of gold on Aunanoparticles, Analyst, 126,9:1502–1504, 2001.CrossRefGoogle Scholar
  100. 100.
    Y. Weizmann, F. Patolsky, I. Popov, I. Willner, Telomerase-generated templates for the growing of metal nanowires, Nano Letters, 4,5:787–792, 2004.CrossRefGoogle Scholar
  101. 101.
    I. Willner, V. Heleg-Shabtai, R. Blonder, E. Katz, G. Tao, A.F. Buckmann, A. Heller, Electrical wiring of glucose oxidase by reconstitution of FAD-modified monolayers assembled onto Au-electrodes, J. Am. Chem. Soc., 118,42:10321–10322, 1996.CrossRefGoogle Scholar
  102. 102.
    I. Willner, E. Katz, B. Willner, in Biosensors and Their Applications, V.C. Yang, T.T. Ngo, (eds.), Kluwer Academic Publishers, New York, 47–98, 2000.Google Scholar
  103. 103.
    I. Willner, A. Riklin, B. Shoham, D. Rivenzon, E. Katz, Development of novel biosensor enzyme electrodes: Glucose oxidase multilayer arrays immobilized onto self-assembled monolayers on electrodes, Advanced Materials, 5,12:912–915, 1993.CrossRefGoogle Scholar
  104. 104.
    I. Willner, B. Willner, E. Katz, Functional biosensor systems via surfacenanoengineering of electronic elements, Reviews in Molecular Biotechnology, 82,4:325–355, 2002.CrossRefGoogle Scholar
  105. 105.
    H. Xin, A.T. Woolley, DNA-templated nanotube localization, J Am Chem Soc, 125,29:8710–8711, 2003.CrossRefGoogle Scholar
  106. 106.
    H. Yan, S. Park, G. Finkelstein, J.H. Reif, T. LaBean, DNA-templated self-assembly of protein arrays and highly conductive nanowires, Science, 301:1882–1884, 2003.CrossRefGoogle Scholar
  107. 107.
    H. Yokota et al., A new method for straightening DNA molecules for optical restriction mapping, Nucleic Acids Research, 25,5:1064–1070, 1997.CrossRefGoogle Scholar
  108. 108.
    H. Yokota, J. Sunwoo, M. Sarikaya, G. van den Engh, R. Aebersold, Spin-stretching of DNA and protein molecules for detection by fluorescence and atomic force microscopy, Anal. Chem., 71,19:4418–22, 1999.CrossRefGoogle Scholar
  109. 109.
    D. Zanchet, C.M. Micheel, W.J. Parak, D. Gerion, A.P. Alivisatos, Electrophoretic isolation of discrete Au nanocrystal/DNA conjugates, Nano Letters, 1,1:32–35, 2001.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Andreas Wolff
    • 1
  • Andrea Csaki
    • 1
  • Wolfgang Fritzsche
    • 1
  1. 1.Institute for Physical High TechnologyJenaGermany

Personalised recommendations