Advertisement

Nanoscale Molecular Transport by Synthetic DNA Machines

  • Jong-Shik Shin
  • Niles A. Pierce
Chapter
Part of the Natural Computing Series book series (NCS)

Keywords

Apparent Rate Constant Walker Movement Periodic Track Wavelength Pair Cargo Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Alberti and J.-L. Mergny. DNA duplex-quadruplex exhange as the basis for a nanomolecular machine. Proc. Natl. Acad. Sci. USA, 100:1569–1573, 2003.CrossRefGoogle Scholar
  2. 2.
    A.P. Alivisatos, K.P. Johnsson, X.G. Peng, T.E. Wilson, C.J. Loweth, M.P. Bruchez, and P.G. Schultz. Organization of ‘nanocrystal molecules’ using DNA. Nature, 382(6592):609–611, 1996.CrossRefGoogle Scholar
  3. 3.
    J.D. Badjic, V. Balzani, A. Credi, S. Silvi, and J.F. Stoddart. A molecular elevator. Science, 303:1845–1849, 2004.CrossRefGoogle Scholar
  4. 4.
    S.M. Block. Kinesin: What gives? Cell, 93:5–8, 1998.CrossRefGoogle Scholar
  5. 5.
    R.M. Dirks and N.A. Pierce. A partition function algorithm for nucleic acid secondary structure including pseudoknots. J. Comput. Chem., 24:1664–1677, 2003.CrossRefGoogle Scholar
  6. 6.
    E. Harlow and D. Lane. Antibodies: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1988.Google Scholar
  7. 7.
    I.L. Hofacker, W. Fontana, P.F. Stadler, L.S. Bonhoeffer, M. Tacker, and P. Schuster. Fast folding and comparison of RNA secondary structures. Chemical Monthly, 125:167–188, 1994.CrossRefGoogle Scholar
  8. 8.
    K. Hofmann, S.W. Wood, C.C. Brinton, J.A. Montibeller, and F.M. Finn. Iminobiotin affinity columns and their application to retrieval of streptavidin. Proc. Natl. Acad. Sci. USA, 77(8):4666–4668, 1980.CrossRefGoogle Scholar
  9. 9.
    D.A. Leigh, J.K.Y. Wong, F. Dehez, and F. Zerbetto. Unidirectional rotation in a mechanically interlocked molecular rotor. Nature, 424:174–179, 2003.CrossRefGoogle Scholar
  10. 10.
    D. Liu, S.H. Park, J.H. Reif, and T.H. LaBean. DNA nanotubes self-assembled from triple-crossover tiles as templates for conductive nanowires. Proc. Natl. Acad. Sci. USA, 101(3):717–722, 2004.CrossRefGoogle Scholar
  11. 11.
    C. Mao, W. Sun, Z. Shen, and N.C. Seeman. A nanomechanical device based on the B–Z transition of DNA. Nature, 397(6715):144–146, 1999.CrossRefGoogle Scholar
  12. 12.
    D.L. Nelson and M.M. Cox. Leninger Principles of Biochemistry. Worth, New York, NY, 2000.Google Scholar
  13. 13.
    P.W.K. Rothemund, A. Ekani-Nkodo, N. Papadakis, A. Kumar, D.K. Fygenseon, and E. Winfree. Design and characterization of programmable DNA nanotubes. J. Am. Chem. Soc., 126(50):16344–16352, 2004.CrossRefGoogle Scholar
  14. 14.
    M. Schliwa and G. Woehlke. Molecular motors. Nature, 422:759–765, 2003.CrossRefGoogle Scholar
  15. 15.
    N.C. Seeman. Nucleic acid junctions and lattices. J. Theor. Biol., 99:237–247, 1982.CrossRefGoogle Scholar
  16. 16.
    W.B. Sherman and N.C. Seeman. A precisely controlled DNA biped walking device. Nano Lett., 4(7):1203–1207, 2004.CrossRefGoogle Scholar
  17. 17.
    J.-S. Shin and N.A. Pierce. Rewritable memory by controllable nanopatterning of DNA. Nano Lett., 4(5):905–909, 2004.CrossRefGoogle Scholar
  18. 18.
    J.-S. Shin and N.A. Pierce. A synthetic DNA walker for molecular transport. J. Am. Chem. Soc., 126:10834–10835, 2004.CrossRefGoogle Scholar
  19. 19.
    F.C. Simmel and B. Yurke. A DNA-based molecular device switchable between three distinct mechanical states. Appl. Phys. Lett., 80(5):883–885, 2002.CrossRefGoogle Scholar
  20. 20.
    M.N. Stojanovic. Personal communication, 2005.Google Scholar
  21. 21.
    Y. Tian, Y. He, Y. Chen, P. Yin, and C. Mao. A DNAzyme that walks processively and autonomously along a one-dimensional track. Angew. Chem. Int. Ed., 44:2–5, 2005.Google Scholar
  22. 22.
    A.J. Turberfield, J.C. Mitchell, B. Yurke, A.P. Mills, Jr., M.I. Blakey, and F.C. Simmel. DNA fuel for free-running nanomachines. Phys. Rev. Lett., 90(11):118102, 2003.CrossRefGoogle Scholar
  23. 23.
    R.D. Vale. The molecular motor toolbox for intracellular transport. Cell, 112:467–480, 2003.CrossRefGoogle Scholar
  24. 24.
    E. Winfree, F. Liu, L.A. Wenzler, and N.C. Seeman. Design and self-assembly of two-dimensional DNA crystals. Nature, 394:539–544, 1998.CrossRefGoogle Scholar
  25. 25.
    H. Yan, X. Zhang, Z. Shen, and N.C. Seeman. A robust DNA mechanical device controlled by hybridization topology. Nature, 415(6867):62–5, 2002.CrossRefGoogle Scholar
  26. 26.
    A. Yildiz, M. Tomishige, R.D. Vale, and P.R. Selvin. Kinesin walks hand-overhand. Science, 303:676–678, 2004.CrossRefGoogle Scholar
  27. 27.
    P. Yin, H. Yan, X.G. Daniell, A. J. Turberfield, and J.H. Reif. A unidirectional DNA walker that moves autonomously along a track. Angew. Chem. Int. Ed., 43:4906–4911, 2004.CrossRefGoogle Scholar
  28. 28.
    B. Yurke, A.J. Turberfield, A.P. Mills, Jr., F.C. Simmel, and J.L. Neumann. A DNA-fuelled molecular machine made of DNA. Nature, 406:605–608, 2000.CrossRefGoogle Scholar
  29. 29.
    M. Zuker. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res., 31(13):3406–3415, 2003.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jong-Shik Shin
    • 1
  • Niles A. Pierce
    • 1
    • 2
  1. 1.Department of BioengineeringUSA
  2. 2.Department of Applied & Computational MathematicsCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations