Skip to main content

DNA-Based Motor Work at Bell Laboratories

  • Chapter
Nanotechnology: Science and Computation

Part of the book series: Natural Computing Series ((NCS))

  • 965 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. X. P. Yang, A.V. Vologodskii, B. Lui, B. Kemper, N.C. Seeman, Torsional control of double-stranded DNA branch migration, Biopolymers 45, 69 (1998).

    Article  Google Scholar 

  2. C. Mao, W. Sun, Z. Shen, N.C. Seeman, A nanomechanical device based on the B–Z transition of DNA, Nature 397, 144 (1999).

    Article  Google Scholar 

  3. B. Yurke, A.J. Turberfield, A.P. Mills, Jr., F.C. Simmel, J.L. Neumann, A DNA-fuelled molecular machine made of DNA, Nature 406, 605 (2000).

    Article  Google Scholar 

  4. F.C. Simmel, B. Yurke, Using DNA to construct and power a nanoactuator, Phys. Rev. E 63, 041913 (2001).

    Google Scholar 

  5. F.C. Simmel, B. Yurke, A DNA-based molecular device switchable between three distinct mechanical states, Appl. Phys. Lett. 80, 883 (2002).

    Article  Google Scholar 

  6. J.J. Li, W. Tan, A single DNA molecule nanomotor, Nano Lett. 2, 315 (2002).

    Article  Google Scholar 

  7. H. Yan, X. Zhang, Z. Shen, N.C. Seeman, A robust DNA mechanical device controlled by hybridization topology, Nature 415, 62 (2002).

    Article  Google Scholar 

  8. J.C. Mitchell and B. Yurke, DNA Scissors, in DNA Based Computers VII, in DNA computers, N. Jonoska, N.C. Seeman, eds., LNCS No. 2340 Springer Verlag, Heidelberg, 2002.

    Google Scholar 

  9. A.J. Turberfield, J.C. Mitchell, B. Yurke, A.P. Mills, Jr., M.I. Blakey, F.C. Simmel, DNA fuel for free-running nanomachines, Phys. Rev. Lett. 90, 118102 (2003).

    Article  Google Scholar 

  10. L. Feng, S.H. Park, J.H. Reif, H. Yan, A two-state DNA lattice switched by DNA nanoactuator, Angew. Chem. Int. Ed. 42, 4342 (2003).

    Article  Google Scholar 

  11. P. Alberti and J.L. Mergny, DNA duplex-quadruplex exchange as the basis for a nanomolecular machine, Proc. Natl. Acad. Sci. USA 100, 1569 (2003).

    Article  Google Scholar 

  12. W.U. Dittmer, A. Reuter, and F.C. Simmel, A DNA-based machine that can cyclically bind and release thrombin, Angew. Chem. Int. Ed. 43, 3549 (2004).

    Article  Google Scholar 

  13. S. Liao and N.C. Seeman, Translation of DNA signals into polymer assembly instructions, Science 306, 2072 (2004).

    Article  Google Scholar 

  14. W. B. Sherman N.C. Seeman, A precisely controlled DNA biped walking device, Nano Letters 4, 1203 (2004).

    Article  Google Scholar 

  15. J.S. Shin, N.A. Pierce, A synthetic DNA walker for molecular transport, J. Am. Chem. Soc. 126, 10834 (2004).

    Article  Google Scholar 

  16. Y. Chen, S.-H. Lee, C. Mao, A DNA nanomachine based on a duplex-triplex transition, Angew. Chem. Int. Ed. 43, 5335 (2004).

    Article  Google Scholar 

  17. Y. Chen, M. Wang, C. Mao, An autonomous DNA nanomotor powered by a DNA enzyme, Angew. Chem. Int. Ed. 43, 3554 (2004).

    Article  Google Scholar 

  18. P. Yin, H. Yan, X.G. Daniell, A.J. Tuberfield, J.H. Reif, A unidirectional DNA walker that moves autonomously along a track, Angew. Chem. Int. Ed. 43, 4906 (2004).

    Article  Google Scholar 

  19. D.C. Lin, B. Yurke, and N.A. Langrana, Mechanical Properties of a reversible, DNA-crosslinked polyacrylamide hydrogel, J. Biomech. Eng. 126, 104 (2004).

    Article  Google Scholar 

  20. B. Yurke and A.P. Mills, Jr., Using DNA to power nanostructures, Genet. Program. Evol. Mach. 4, 111 (2003).

    Article  Google Scholar 

  21. A.J. Turberfield, B. Yurke, A.P. Mills, Jr., DNA hybridization catalysts and molecular tweezers, in DNA Based Computers V, DIMACS Series in Discrete Mathematics and Theoretical Computer Science Vol. 54, E. Winfree, D. K. Gifford, eds., American Mathematical Society, 2000, pp. 171–182.

    Google Scholar 

  22. H.X. Qiu, J.C. Dewan, N.C. Seeman, A DNA decamer with sticky end: The crystal structure of d-CGACGATCGT, J. Mol. Bio. 267, 881 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yurke, B. (2006). DNA-Based Motor Work at Bell Laboratories. In: Chen, J., Jonoska, N., Rozenberg, G. (eds) Nanotechnology: Science and Computation. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30296-4_10

Download citation

  • DOI: https://doi.org/10.1007/3-540-30296-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30295-7

  • Online ISBN: 978-3-540-30296-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics