Skip to main content

Pulsed Neutron Sources with Tabletop Laser-Accelerated Protons

  • Chapter
Lasers and Nuclei

Part of the book series: Lecture Notes in Physics ((LNP,volume 694))

Abstract

Neutron production rates using laser-accelerated protons from highenergy single-shot laser (giant pulse laser) and low-energy high-repetition tabletop laser systems are compared. With the VULCAN giant pulse laser, more than 109 neutrons per shot were produced in a nanosecond pulse through (p,xn) reactions with lead. In contrast, a current state-of-the-art tabletop laser theoretically can produce 106 to 107 neutrons per second in repetitional nanosecond pulses. It is estimated that next-generation tabletop lasers currently under construction will be capable of producing nanosecond neutron pulses at a rate of 1010 neutrons per second.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Umstadter: Nature 404, 239 (2000)

    Article  Google Scholar 

  2. K. Ledingham, P. McKenna, R.P. Singhal: Science 300, 1107 (2003)

    Article  ADS  Google Scholar 

  3. J. Galy et al.: Central Laser Facility Annual Report 2001/2002, 29, (2002) http://www.clf.rl.ac.uk/Reports/

    Google Scholar 

  4. F. Ewald et al.: Plasma Phys. Control. Fusion 45, A83 (2003)

    Article  ADS  Google Scholar 

  5. J. Magill, H. Schwoerer, F. Ewald, J. Galy, R. Schenkel, R. Sauerbrey: Appl. Phys. B 77, 387 (2003)

    Article  ADS  Google Scholar 

  6. H. Schwoerer, F. Ewald, R. Sauerbrey, J. Galy, J. Magill, V. Rondinella, R. Schenkel, T. Butz: Europhys. Lett. 61, 47 (2003)

    Article  ADS  Google Scholar 

  7. B. Liesfeld et al.: Appl. Phys. B 79, 1047 (2004)

    Article  ADS  Google Scholar 

  8. S. Karsch et al.: Phys. Rev. Lett., 91, 015001 (2003)

    Article  ADS  Google Scholar 

  9. K. Ledingham et al.: Phys. Rev. Lett., 84, 899 (2000)

    Article  ADS  Google Scholar 

  10. P. Main et al.: IEEE J. Quant. Electr., 24, 398 (1988)

    Article  ADS  Google Scholar 

  11. RAL, Chilton, Didcot, UK, http://www.clf.rl.ac.uk/Reports/

    Google Scholar 

  12. LLNL, Livermore, CA, http://www.llnl.gov/

    Google Scholar 

  13. LULI, Palaiseau, France, http://www.luli.polytechnique.fr/

    Google Scholar 

  14. CUOS, Ann Arbor, MC, http://www.eecs.umich.edu/USL/

    Google Scholar 

  15. LOA, Palaiseau, France, http://wwwy.ensta.fr/loa/

    Google Scholar 

  16. Y. Sentoku et al.: Phys. Plasmas 10, 2009 (2003)

    Article  ADS  Google Scholar 

  17. R. Hartke, D.R. Symes et al.: Nucl. Instrum. Methods Phys. Res. A 540, 464 (2005)

    Article  ADS  Google Scholar 

  18. S. J. Parry: Activation Spectrometry in Chemical Analysis (John Wiley and Sons, New York, 1991)

    Google Scholar 

  19. M.D. Glascock: University of Missouri Research Reactor (MURR), Columbia, An Overview of Neutron Activation Analysis (2005) http://www.missouri.edu/≈glascock/naa_over.htm

    Google Scholar 

  20. Nuclear Geophysics and Its Applications. IAEA Technical Reports Series 393, IAEA, Vienna, Austria (1999)

    Google Scholar 

  21. J.C. Domanus: Practical Neutron Radiography (Kluwer Academic Publishers, 1992)

    Google Scholar 

  22. E. Lehmann: What Is Neutron Radiography? (Paul Scherrer Institute, Villigen, Switzerland) http://neutra.web.psi. ch/What/index.html

    Google Scholar 

  23. J.T. Mendonça et al.: Meas. Sci. Technol. 12, 1801 (2001)

    Article  ADS  Google Scholar 

  24. R.A. Snavely et al.: Phys. Rev. Lett. 85, 2945 (2000)

    Article  ADS  Google Scholar 

  25. M. Kaluza et al.: Phys. Rev. Lett. 93, 045003 (2004)

    Article  ADS  Google Scholar 

  26. E.L. Clark et al.: Phys. Rev. Lett. 85, 1654 (2000)

    Article  ADS  Google Scholar 

  27. I. Spencer et al.: Nucl. Instrum. Methods Phys. Res. B 183, 449 (2001)

    Article  ADS  Google Scholar 

  28. T. Esirkepov et al.: Phys. Rev. Lett. 92, 175003 (2004)

    Article  ADS  Google Scholar 

  29. T. Tajima, C. Mourou: Phys. Rev. Spec. Topics 5, 031301 (2002)

    ADS  Google Scholar 

  30. T. Žagar, J. Galy, J. Magill and M. Kellett: N. J. Phys. 7, 253 (2005)

    Article  Google Scholar 

  31. J.M. Yang, P. McKenna et al.: Appl. Phys. Lett. 84, 675 (2004)

    Article  ADS  Google Scholar 

  32. P. McKenna et al.: Phys. Rev. Lett. 94, 084801 (2005)

    Article  ADS  Google Scholar 

  33. T. Žagar et al.: Characterization of Laser Accelerated Protons with CR39 Track Detectors: Jena August 2004. S.P./K.04.224, EC-JRC-ITU, Karlsruhe (2004)

    Google Scholar 

  34. R. Ilić, S.A. Durrani: Solid state nuclear track detectors In: M. F. L’Annunziata, Handbook of Radioactivity Analysis, 2nd edn (Academic Press, Amsterdam, 2003), pp. 179–237

    Google Scholar 

  35. A.J. Mackinnon et al.: Phys. Rev. Lett. 88, 215006 (2002)

    Article  ADS  Google Scholar 

  36. A.J. Koning, S. Hilaire, and M.C. Duijvestijn: AIP Conf. Proc. 769, 1154 (2005)

    Article  ADS  Google Scholar 

  37. J. Magill: Nuclides.net. Springer-Verlag, Berlin (2002) http://www.nuclides.net/

    Google Scholar 

  38. Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), TU-München, Garching, Deutchland. http://www.frm2.tum.de/

    Google Scholar 

  39. Paul Scherrer Institut, Villigen, Schweiz, http://www.psi.ch/

    Google Scholar 

  40. K. Lancaster et al.: Phys. Plasmas 11, 3404 (2004)

    Article  ADS  Google Scholar 

  41. J. Yang et al.: J. Appl. Phys. 96, 6912 (2004)

    Article  ADS  Google Scholar 

  42. J. Byrne: Neutrons, Nuclei and Matter, an Exploration of the Physics of Slow Neutrons (Institute of Physics, London, 1995)

    Google Scholar 

  43. Portable Neutron Generators, Del Mar Ventures, San Diego, CA. http://www.sciner.com/Neutron/Neutron_Generators_Basics.htm

    Google Scholar 

  44. J. Galy et al.: Nucl. Instrum. Methods Phys. Res. A 485, 739 (2002)

    Article  ADS  Google Scholar 

  45. J. Ziegler, J. Biersack: SRIM-2003: The Stopping and Range of Ions in Matter (2003) http://www.srim.org/

    Google Scholar 

  46. International Atomic Energy Agency – Nuclear Data Section, Vienna, Austria (2004) http: //www-nds.iaea.org/

    Google Scholar 

  47. P. McKenna et al.: Rev. Sci. Instrum. 73, 4176 (2002)

    Article  ADS  Google Scholar 

  48. J. Zweiback et al.: Phys. Rev. Lett. 85, 3640 (2000)

    Article  ADS  Google Scholar 

  49. R. Sauerbrey et al.: POLARIS – a Compact, Diode-Pumped Laser System in the Petawatt Regime. International Workshop Lasers & Nuclei, Karlsruhe, 13–15 September 2004 S.P./K.04.173, EC-JRC-ITU, Karlsruhe (2004)

    Google Scholar 

  50. J. Hein et al.: POLARIS: An All Diode-Pumped Ultrahigh Peak Power Laser for High Repetition Rate. Lasers and Nuclei (Springer-Verlag, Berlin, in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Žagar, T., Galy, J., Magill, J. (2006). Pulsed Neutron Sources with Tabletop Laser-Accelerated Protons. In: Schwoerer, H., Beleites, B., Magill, J. (eds) Lasers and Nuclei. Lecture Notes in Physics, vol 694. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-30272-7_8

Download citation

Publish with us

Policies and ethics