POLARIS: An All Diode-Pumped Ultrahigh Peak Power Laser for High Repetition Rates

  • J. Hein
  • M. C. Kaluza
  • R. Bödefeld
  • M. Siebold
  • S. Podleska
  • R. Sauerbrey
Part of the Lecture Notes in Physics book series (LNP, volume 694)


After the invention of the technique of chirped pulse amplification (CPA) [1] we have witnessed a tremendous progress in laser development over the last years. Nowadays, pulses having peak powers in the terawatt (TW) regime can be produced using table-top laser systems that easily fit into university-scale laboratories and operate at repetition rates of 10 Hz and more. These pulses can be focused to reach peak intensities in excess of 1019 W/cm2 on target which enables us to study the physics of relativistic laser-plasma interaction. However, in order to generate pulses with peak powers of 1 petawatt (PW) and more and intensities beyond 1021 W/cm2 one still has to use large-scale facilities delivering pulses containing energies of a few 10’s J or a couple of 100’s J depending on the laser material used. Due to cooling issues these PWlaser systems can be operated at a shot rate of 1 to 3 shots per hour only. This severely limits the variety and complexity of experiments that can be carried out with such laser systems.


Laser Diode Phosphate Glass Laser Material High Repetition Rate High Peak Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Strickland and G. Mourou: Optics Communications 56, 219 (1985)CrossRefADSGoogle Scholar
  2. 2.
    E. L. Clark et al.: Phys. Rev. Lett. 85, 1654 (2000)CrossRefADSGoogle Scholar
  3. 3.
    R. Snavely et al.: Phys. Rev. Lett. 85, 2945 (2000)CrossRefADSGoogle Scholar
  4. 4.
    K. W. D. Ledingham: J. Physics D: Appl. Phys. 37, 2341 (2004)CrossRefADSGoogle Scholar
  5. 5.
    H. Schwoerer et al.: Phys. Rev. Lett. 96, 014802 (2006)CrossRefADSGoogle Scholar
  6. 6.
    M. Kaluza et al.: Phys. Rev. Lett. 93, 045003 (2004)CrossRefADSGoogle Scholar
  7. 7.
    C. B. Edwards et al.: Central Laser Facility, Annual Report, pg. 164 (2001)Google Scholar
  8. 8.
    Y. Kitagawa et al.: IEEE J. Quantum Electron. 40, 281 (2004)CrossRefADSGoogle Scholar
  9. 9.
    M. Aoyama et al.: Opt. Lett. 28, 1594 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    C. Palmer: Diffraction Grating Handbook (Richardson Grating Laboratory, 2002)Google Scholar
  11. 11.
    W. Koechner: Solid State Laser Engineering (Springer, 1998)Google Scholar
  12. 12.
    M. Siebold et al.: to be publishedGoogle Scholar
  13. 13.
    D. Ehrt: Curr. Opin. in Solid State Mater. Sei. 7(2), 135 (2003)CrossRefGoogle Scholar
  14. 14.
    D. Ehrt, T. Töpfer: In: Proc. SPIE Int. Soc. Optical Engineering vol. 4102, 95 (2000)ADSGoogle Scholar
  15. 15.
    T. Danger, E. Mix, E. Heumann, G. Huber, D. Ehrt, W. Seeber: OSA Trends in Optics and Photonics on Advanced Solid State Lasers pp. 23–25 (1996)Google Scholar
  16. 16.
    E. Mix, E. Heumann, G. Huber, D. Ehrt, W. Seeber: Advanced Solid-State Lasers Topical Meeting Proc. 1995, 230 (1995)Google Scholar
  17. 17.
    V. Petrov, U. Griebner, D. Ehrt, W. Seeber: Opt. Lett. 22(6), 408 (1997)ADSCrossRefGoogle Scholar
  18. 18.
    S. Paoloni, J. Hein, T. Töpfer, H.G. Walther, R. Sauerbrey, D. Ehrt, W. Wintzer: Appl. Phys. B 78, 415 (2004)CrossRefADSGoogle Scholar
  19. 19.
    J. Hein, S. Paoloni, H.G. Walther: J. Phys. IV France 125, 141 (2005)CrossRefGoogle Scholar
  20. 20.
    T. Töpfer, J. Hein, J. Philipps, D. Ehrt, R. Sauerbrey: Appl. Phys. Lasers Opt. B71(2), 203 (2000)ADSGoogle Scholar
  21. 21.
    F. Dorsch, V. Blümel, M. Schröder, D. Lorenzen, P. Hennig, D. Wolff: Proc. SPIE 3945, 43 (2000)ADSGoogle Scholar
  22. 22.
    R. Göring, S. Heinemann, M. Nickel, P. Schreiber, U. Röllig: german patent No. DE 19800590 A1, Jenoptik AG Jena (1999)Google Scholar
  23. 23.
    F. Verluise, V. Laude, Z. Cheng, G. Spielmann, P. Tournois: Opt. Lett. 25(8), 575 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bödefeld, R. Sauerbrey, D. Ehrt, W. Wintzer: Appl. Phys. B 79, 419 (2004)CrossRefGoogle Scholar
  25. 25.
    J. Philipps, J. Hein, R. Sauerbrey: patent No. DE 102 35 713 A1 (2004)Google Scholar
  26. 26.
    M. Siebold, S. Podleska, J. Hein, M. Hornung, R. Bödefeld, M. Schnepp, R. Sauerbrey: Appl. Phys. B (in press)Google Scholar
  27. 27.
    E.B. Treacy: IEEE J. Quantum Electron. 5, 454 (1969)CrossRefADSGoogle Scholar
  28. 28.
    G. Pretzler, A. Kasper, K.J. Witte: Appl. Phys. B 70, 1 (2000)CrossRefADSGoogle Scholar
  29. 29.
    C. Fiorini, C. Sauteret, C. Rouyer, N. Blanchot, S. Seznec, A. Migus: IEEE J. Quantum Electron. 30, 1662 (1994)CrossRefADSGoogle Scholar
  30. 30.
    T. Kessler, J. Bunkenburg, H. Huang, A. Koslov, D. Meyerhofer: Opt. Lett. 29, 635 (2004)CrossRefADSGoogle Scholar
  31. 31.
    C.P.J. Barty: Techn. Digest (1998)Google Scholar
  32. 32.
    J.T. Early: AIP Conf. Proc. (578), 713 (2001)Google Scholar
  33. 33.
    T. Kawashima, T. Kanabe, H. Matsui, T. Eguchi, M. Yamanaka, Y. Kato, M. Nakatsuka, Y. Izawai, S. Nakai, T. Kanzaki, H. Kan: Jpn. J. Appl. Phys. Pt.1 Regular Papers, Short Notes & Rev. Papers 40(11), 6415 (2001)Google Scholar
  34. 34.
    S. Nakai, T. Kanabe, T. Kawashima, M. Yamanaka, Y. Izawa, M. Nakatuka, R. Kandasamy, H. Kan, T. Hiruma, M. Niino: Proc. SPIE Int. Soc. Opt. Eng. 4065, 29 (2000)ADSGoogle Scholar
  35. 35.
    J.C. Chanteloup, G. Bourdet, A. Migus: Technical Digest CLEO No. 02CH37337 pp. 515–516 (2002)Google Scholar
  36. 36.
    J.C. Chanteloup, G. Bourdet, A. Migus: Technical Digest CLEO No.02CH37337 (2002)Google Scholar
  37. 37.
    A. Lucca, G. Debourg, M. Jacquemet, F. Druon, F. Balembois, P. Georges: Opt. Lett. 29(23), 2767 (2004)CrossRefADSGoogle Scholar
  38. 38.
    V. Petit, J. Doualan, P. Camy, V. Ménard, R. Moncorgé: Appl. Phys. B 78, 681 (2004)CrossRefADSGoogle Scholar
  39. 39.
    F. Druon, S. Chénais, P. Raybaut, F. Balembois, P. Georges, R. Gaumé, G. Aka, B. Viana, S. Mohr, D. Kopf: Opt. Lett. 27(3), 197 (2002)ADSCrossRefGoogle Scholar
  40. 40.
    M. Jacquemet, C. Jacquemet, N. Janel, F. Druon, F. Balembois, P. Georges, J. Petit, B. Viana, D. Vivien: Appl. Phys. B 80, 171 (2005)CrossRefADSGoogle Scholar
  41. 41.
    F. Druon, S. Chénais, F. Balembois, P. Georges, R. Gaumé, B. Viana: Opt. Lett. 30(8), 857 (2005)CrossRefADSGoogle Scholar
  42. 42.
    G. Paunescu, J. Hein, R. Sauerbrey: Appl. Phys. B 79, 555 (2004)CrossRefADSGoogle Scholar
  43. 43.
    P. Matousek, I.N. Ross, J.L. Collier, B. Rus: Technical Digest CLEO No.02CH37337 p. 51 (2002)Google Scholar
  44. 44.
    G. Cerullo, S. De-Silvestri: Rev. Sei. Instrum. 74(1), l (2003)Google Scholar
  45. 45.
    P. Matousek, B. Rus, I. Ross: IEEE J. Quantum Electron. 36(2), 158 (2000)CrossRefADSGoogle Scholar
  46. 46.
    P. Matousek, I.N. Ross, J.L. Collier, B. Rus: Techn. Digest (2002)Google Scholar
  47. 47.
    I.N. Ross, J.L. Collier, P. Matousek, C.N. Danson, D. Neely, R.M. Allott, D.A. Pepler, C. Hernandez-Gomez, K. Osvay: Appl. Opt. 39(15), 2422 (2000)ADSCrossRefGoogle Scholar
  48. 48.
    Zhu-Peng-Fei, Qian-Lie-Jia, Xue-Shao-Lin, Lin-Zun-Qi: Acta Physica Sinica 52(3), 587 (2003)Google Scholar
  49. 49.
    M. Nakatsuka, H. Yoshida, Y. Fujimoto, K. Fujioka, H. Fujita: J. Korean Phys. Soc. 43(4), pt. 2, 607 (2003)Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • J. Hein
    • 1
  • M. C. Kaluza
    • 1
  • R. Bödefeld
    • 1
  • M. Siebold
    • 1
  • S. Podleska
    • 1
  • R. Sauerbrey
    • 1
  1. 1.Institut für Optik und QuantenelektronikFriedrich-Schiller-UniversitätJenaGermany

Personalised recommendations