Skip to main content

High-Power Laser Production of PET Isotopes

  • Chapter
Lasers and Nuclei

Part of the book series: Lecture Notes in Physics ((LNP,volume 694))

Abstract

Recent experiments have demonstrated that laser–solid interactions at intensities greater than 1019 W/cm2 can producefast electron beams of several hundred MeV [1], tens of MeV γ-rays [2, 3], up to 58MeV proton beams [4, 5], and heavier ions [6] of up to 7MeV/nucleon. One of the potential applications of the high-energy proton beams is the production of radioactive isotopes for positron emission tomography (PET). PET is a form of medical imaging requiring the production of short-lived positron emitting isotopes 11C, 13N, 15O, and 18F, by proton irradiation of natural/enriched targets using cyclotrons. PET development has been limited because of the size and shielding requirements of the nuclear installations. Recent results have shown when an intense laser beam interacts with solid targets, tens of MeV protons capable of producing PET isotopes are generated [7, 8, 9].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Malka et al.: Science 298, 1596 (2002)

    Article  ADS  Google Scholar 

  2. M.I.K. Santala et al.: Phys. Rev. Lett. 84, 1459 (2000)

    Article  ADS  Google Scholar 

  3. B. Liesfeld et al.: Appl. Phys. B 79, 1047 (2004)

    Article  ADS  Google Scholar 

  4. E.L. Clark et al.: Phys. Rev. Lett. 84, 670 (2000)

    Article  ADS  Google Scholar 

  5. R.A. Snavely et al.: Phys. Rev. Lett. 85, 2945 (2000)

    Article  ADS  Google Scholar 

  6. P. McKenna et al.: Phys. Rev. Lett. 91, (2003)

    Google Scholar 

  7. I. Spencer et al.: Nucl. Instr. Meth. 183, 449 (2003)

    Google Scholar 

  8. K.W.D. Ledingham et al.: J. Phys. D: Appl. Phys. 37, 2341 (2004)

    Article  ADS  Google Scholar 

  9. S. Fritzler et al.: Appl. Phys. Lett. 83, 3039 (2003)

    Article  ADS  Google Scholar 

  10. K. Kettern et al.: Appl. Rad. Isot. 60, 939 (2004)

    Article  Google Scholar 

  11. www.manpet.man.ac.uk, 2004.

    Google Scholar 

  12. http://www.nuc.ucla.edu/pet/

    Google Scholar 

  13. T. Tajima and J.M. Dawson: Phys. Rev. Lett. 43, 267 (1979)

    Article  ADS  Google Scholar 

  14. S.P.D. Mangles et al.: Phys. Rev. Lett, (submitted) 2004

    Google Scholar 

  15. S.P.D. Mangles et al.: Nature, 431, 535 2004

    Article  ADS  Google Scholar 

  16. J. Faure et al.: Nature, 431, 541 (2004)

    Article  ADS  Google Scholar 

  17. C.G.R. Geddes et al.: Nature, 431, 538 (2004)

    Article  ADS  Google Scholar 

  18. D. Strickland and G. Mourou: Opt. Commun. 56, 219 (1985)

    Article  ADS  Google Scholar 

  19. I.N. Ross: Laser Part Beams 17, 331 (1999)

    Article  ADS  Google Scholar 

  20. A. Dubietis et al.: Opt. Commun. 88, 437 (1992)

    Article  ADS  Google Scholar 

  21. D. Umstadter: Phys. Plasmas 8, 1774 (2001)

    Article  ADS  Google Scholar 

  22. I. Spencer et al.: Rev. Sci. Inst. 73, 3801 (2002)

    Article  ADS  Google Scholar 

  23. S.C. Wilks et al.: Phys. Plasmas. 8, 542 (2001)

    Article  ADS  Google Scholar 

  24. M. Allen: PhD thesis 2004 Laser Ion Acceleration From the Interaction of Ultra-Intense Laser Pulse With Thin Foils: LLNL – UCRL-TH-203170

    Google Scholar 

  25. D. Umstadter: J. Phys. D: Appl. Phys. 36, R151 (2003)

    Article  ADS  Google Scholar 

  26. M. Zepf et al.: Phys. Plasmas. 8, 2323 (2001)

    Article  ADS  Google Scholar 

  27. S.P. Hatchett et al.: (2000), Phys. Plasmas. 7, 2076

    Article  ADS  Google Scholar 

  28. IAEAND.IAEA.OR.AT/exfor: (2004), EXFOR Nuclear Reaction Database

    Google Scholar 

  29. J.M. Yang et al.: Appl. Phys. Lett. 84, 675 (2004)

    Article  ADS  Google Scholar 

  30. K. Hamacher et al.: J. Nucl. Med. 27 (1986)

    Google Scholar 

  31. P.K. Patel: private communication

    Google Scholar 

  32. J.L. Collier and Ross IN: private communication

    Google Scholar 

  33. www.physik.uni-jena.de/qe/Forschung/F-Englisch/Petawatt/Eng-FP-Petawatt.html

    Google Scholar 

  34. K.G. Nakamura et al.: Conference Proceedings-Field Ignition High Field Physics (Kyoto, Japan), p. 2724 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Robson, L., McKenna, P., McCanny, T., Ledingham, K., Gillies, J., Zweit, J. (2006). High-Power Laser Production of PET Isotopes. In: Schwoerer, H., Beleites, B., Magill, J. (eds) Lasers and Nuclei. Lecture Notes in Physics, vol 694. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-30272-7_12

Download citation

Publish with us

Policies and ethics