Advertisement

The Nuclear Era of Laser Interactions: New Milestones in the History of Power Compression

  • A.B. Borisov
  • X. Song
  • P. Zhang
  • Y. Dai
  • K. Boyer
  • C.K. Rhodes
Part of the Lecture Notes in Physics book series (LNP, volume 694)

Abstract

A brief review of the history of power compression over a range encompassing approximately 40 orders of magnitude places laser–nuclear interactions roughly at the logarithmic midpoint of the scale at approximately 1020 W/cm3. The historical picture also motivates four conclusions, specifically, that (1) foreseen developments in power compression will enable laser-induced coupling to all nuclei, (2) conventional physical mechanisms will encounter a limit of Ωα ~ 1030 – 1031 W/cm3, a value approximately 1010 above the presently demonstrated capability, (3) the key to reaching the Ωα limit is the generation of relativistic/chargedisplacement self-trapped channels with multikilovolt X-rays in high-Z solids, a concept named “photon staging,” and (4) penetration into the 1030 –1040 W/cm3 zone, the highest range known and the region represented by processes of elementary particle decay, will require an understanding of new physical processes that are presumably tied to phenomena at the Planck scale.

Keywords

Power Density Nuclear Interaction Plasma Channel Sandia National Laboratory Composite State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.C. Baldwin, J.C. Solem, V.I. Gol’danskii: Rev. Mod. Phys. 53, 687 (1981)CrossRefADSGoogle Scholar
  2. 2.
    K. Boyer, T.S. Luk, C.K. Rhodes: Phys. Rev. Lett. 60, 557 (1988)CrossRefADSGoogle Scholar
  3. 3.
    K.W.D. Ledingham, I. Spencer, T. McCanny, R. Singhal, M. Santala, E. Clark, I. Watts, F. Beg, M. Zepf, K. Krushelnick, M. Tatarakis, A. Dangor, P. Norreys, R. Allott, D. Neely, R. Clark, A. Machacek, J. Wark, A. Cresswell, D. Sanderson, J. Magill: Phys. Rev. Lett. 84, 899 (2000)CrossRefADSGoogle Scholar
  4. 4.
    T.E. Cowan, A. Hunt, T. Phillips, S. Wilks, M. Perry, C. Brown, W. Fountain, S. Hatchett, J. Johnson, M. Key, T. Parnell, D. Pennington, R. Snavely, Y. Taka-hashi: Phys. Rev. Lett. 84, 903 (2000)CrossRefADSGoogle Scholar
  5. 5.
    A.B. Borisov, X. Song, F. Frigeni, Y. Koshman, Y. Dai, K. Boyer, C.K. Rhodes: J. Phys. B: At. Mol. Opt. Phys. 36, 3433 (2003)CrossRefADSGoogle Scholar
  6. 6.
    A.B. Borisov, J. Davis, X. Song, Y. Koshman, Y. Dai, K. Boyer, C.K. Rhodes: J. Phys. B: At. Mol. Opt. Phys. 36, L285 (2003)CrossRefADSGoogle Scholar
  7. 7.
    Y. Dai, A.B. Borisov, J.W. Longworth, K. Boyer, C.K. Rhodes: In: Proc. Int. Conf. Electromagnet. Adv. Appl., Politecnico di Torino, Torino, Italy, 1999, ed. R. Graglia, p. 3Google Scholar
  8. 8.
    Y. Dai, A.B. Borisov, J.W. Longworth, K. Boyer, C.K. Rhodes: Int. J. Mod. Phys. A 18, 4257 (2003)zbMATHCrossRefADSGoogle Scholar
  9. 9.
    Y. Dai, A.B. Borisov, J.W. Longworth, K. Boyer, C.K. Rhodes: Adv. Stud. Contemp. Math. 10, 149 (2005)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • A.B. Borisov
    • 1
  • X. Song
    • 1
  • P. Zhang
    • 1
  • Y. Dai
    • 2
  • K. Boyer
    • 1
  • C.K. Rhodes
    • 1
    • 2
    • 3
    • 4
  1. 1.Laboratory for X-Ray Microimaging and Bioinformatics, Department of PhysicsUniversity of Illinois at ChicagoChicagoUSA
  2. 2.Department of BioengineeringUniversity of Illinois at ChicagoChicagoUSA
  3. 3.Department of Computer ScienceUniversity of Illinois at ChicagoChicagoUSA
  4. 4.Department of Electrical and Computer EngineeringUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations