Kompressionsverfahren für Video und Audio

  • Jan Schulz
Part of the X.media.press book series (XMEDIAP)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [3GP00a]
    3GPP TS 06.20, V. 8.0.1: Half Rate Speech Transcoding. 3rd Generation Partnership Project, 2000.Google Scholar
  2. [3GP00b]
    3GPP TS 06.60, V. 8.0.1: Enhanced Full Rate (EFR) Speech Transcoding. 3rd Generation Partnership Project, 2000.Google Scholar
  3. [3GP00c]
    3GPP TS 06.90, V. 7.2.1: Adaptive Multi-Rate (AMR) Speech Transcoding. 3rd Generation Partnership Project, 2000.Google Scholar
  4. [3GP01]
    3GPP TS 06.10, V. 8.2.0: Full Rate Speech Transcoding. 3rd Generation Partnership Project, 2001.Google Scholar
  5. [3GP05]
    3GPP TS 26.190, V. 6.1.1: Adaptive Multi-Rate-Wideband (AMR-WB) speech codec; Transcoding functions. 3rd Generation Partnership Project, 2005.Google Scholar
  6. [3G205]
    3GPP2 C.S0052-A, V. 1.0: Source-Controlled Variable-Rate Multimode Wideband Speech Codec (VMR-WB). 3rd Generation Partnership Project, 2005.Google Scholar
  7. [ANR74]
    Ahmed, N. et al.: Discrete Cosine Transform. IEEE Transactions on Computers, 23(1):90–93, 1974.MATHGoogle Scholar
  8. [Aro92]
    Arons, B.: A review of the cocktail party effect. Journal of the American Voice I/O Society, 12(1):35–50, 1992.Google Scholar
  9. [AtS67]
    Atal, B., Schroeder, M: Predictive coding of speech signals. Proceedings of the IEEE Conference on Speech Communication and Processing, pp. 360–361, 1967.Google Scholar
  10. [BDS05]
    Borer, T. et al.: Dirac Video Compression. BBC R&D Whitepaper WHP 124. British Broadcasting Corporation, 2005.Google Scholar
  11. [BrS94]
    Brandenburg, K., Stoll, G.: ISO-MPEG-1 Audio: A Generic Standard for Coding of High-Quality Digital Audio. Journal of the Audio Engineering Society, 42(10):780–792, 1994.Google Scholar
  12. [Bra99]
    Brandenburg, K.: MP3 and AAC explained. Proceedings of the AES 17th International Conference on High Quality Audio Coding, pp. 99–111, 1999.Google Scholar
  13. [ChP89]
    Choi, W., Park, R.-H.: Motion vector coding with conditional transmission. Signal Processing, 18(3):259–269, 1989.CrossRefGoogle Scholar
  14. [Chu03]
    Chu, W.: Speech Coding Algorithms — Foundation and Evolution of Standardized Coders. Hoboken: Wiley 2003.MATHGoogle Scholar
  15. [Dau88]
    Daubechies, I.: Orthonormal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics, 41:909–996, 1988.MATHMathSciNetGoogle Scholar
  16. [DCI05]
    DCI — Digital Cinema Initiatives: Digital Cinema System Specification, Vers. 1.0, 2005.Google Scholar
  17. [Dic97]
    Dickreiter, M.: Handbuch der Tonstudiotechnik — Band 1. Sechste, verbesserte Auflage. München: K.H. Saur 1997.Google Scholar
  18. [Die05]
    Diepold, K.: SMTPE VC-1 und MPEG-4 AVC im Vergleich. Digital Production, 4:88–91, 2005.Google Scholar
  19. [Fan60]
    Fant, G.: Acoustic Theory of Speech Production. Den Haag: Mouton 1960.Google Scholar
  20. [Gib05]
    Gibson, J.: Speech Coding Methods, Standards and Applications. IEEE Circuits and Systems, 5(4):30–49, 2005.CrossRefGoogle Scholar
  21. [Gra98]
    Gray, R.: Entropy and Information Theory. Heidelberg: Springer 1998.MATHGoogle Scholar
  22. [GrM84]
    Grossmann, A., Morlet, J.: Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM Journal of Mathematical Analysis, 15(4):723–736, 1984.MATHMathSciNetCrossRefGoogle Scholar
  23. [Haa10]
    Haar, A.: Zur Theorie der orthogonalen Funktionensysteme. In: Mathematische Annalen, 69:331–371, 1910.MATHMathSciNetCrossRefGoogle Scholar
  24. [HaP96]
    Han, J., Polyzos, G.: Networking Applications of the Hierarchical Mode of the JPEG Standard. IEEE Proceedings of the International Phoenix Conference on Computers and Communications, pp. 58–64, 1996.Google Scholar
  25. [HeG00]
    Herre, J., Grill, B.; Overview of MPEG-4 audio and its applications in mobile communications. Proceedings of the 5th International Conference on Signal Processing, 1:11–20, 2000.Google Scholar
  26. [Huf52]
    Huffman, D.: A Method for the Construction of Minimum Redundancy Codes. Proceedings of the Institute of Radio Engineers (IRE), 40:1098–1101, 1952.Google Scholar
  27. [ISO93a]
    ISO/IEC JTC 1/SC 29 11172: Coding of moving pictures and associated audio for digital storage media at up to about 1,5 Mbit/s. ISO/IEC Joint Technical Committee 1/Subcommittee 29, 1993.Google Scholar
  28. [ISO93b]
    ISO/IEC JTC 1/SC 29 11544: Coded representation of picture and audio information — Progressive bi-level image compression. ISO/IEC Joint Technical Committee 1/Subcommittee 29, 1993.Google Scholar
  29. [ISO94]
    ISO/IEC JTC 1/SC 29 10918: Digital compression and coding of continuous-tone still images. ISO/IEC Joint Technical Committee 1/Subcommittee 29, 1994.Google Scholar
  30. [ISO97]
    ISO/IEC JTC 1/SC 24 14772: The Virtual Reality Modeling Language. ISO/IEC Joint Technical Committee 1/Subcommittee 24, 1997.Google Scholar
  31. [ISO99]
    ISO/IEC JTC 1/SC 29 14495: Lossless and near-lossless compression of continuous-tone still images. ISO/IEC Joint Technical Committee 1/Subcommittee 29, 1999.Google Scholar
  32. [ISO00]
    ISO/IEC JTC 1/SC 29 13818: Generic coding of moving pictures and associated audio information. ISO/IEC Joint Technical Committee 1/Subcommittee 29, 2000.Google Scholar
  33. [ISO02]
    ISO/IEC JTC 1/SC 29 15938: Multimedia content description interface. ISO/IEC Joint Technical Committee 1/Subcommittee 29, 2002.Google Scholar
  34. [ISO04a]
    ISO/IEC JTC 1/SC 29 14496: Coding of audio-visual objects. ISO/IEC Joint Technical Committee 1/Subcommittee 29, 2004.Google Scholar
  35. [ISO04b]
    ISO/IEC JTC 1/SC 29 14496-4/FDAmd 9: AVC fidelity range extensions conformance. ISO/IEC Joint Technical Committee 1/Subcommittee 29, 2004.Google Scholar
  36. [ISO04c]
    ISO/IEC JTC 1/SC 29 15444: Information technology — JPEG 2000 image coding system. ISO/IEC Joint Technical Committee 1/Subcommittee 29, 2004.Google Scholar
  37. [ISO04d]
    ISO/IEC JTC 1/SC 29 21000: Multimedia framework (MPEG-21). ISO/IEC Joint Technical Committee 1/Subcommittee 29, 2004.Google Scholar
  38. [ITU88a]
    ITU-T Recommendation G.711: Pulse code modulation (PCM) of voice frequencies. ITU Telecommunication Standardization Sector, 1988.Google Scholar
  39. [ITU88b]
    ITU-T Recommendation G.722: 7 kHz audio-coding within 64 kbit/s. ITU Telecommunication Standardization Sector, 1988.Google Scholar
  40. [ITU90a]
    ITU-T Recommendation G.726: 40, 32, 24, 16 kbit/s Adaptive Differential Pulse Code Modulation (ADPCM). ITU Telecommunication Standardization Sector, 1990.Google Scholar
  41. [ITU90b]
    ITU-T Recommendation G.727: 5-, 4-, 3-and 2-bit/sample embedded adaptive differential pulse code modulation (ADPCM). ITU Telecommunication Standardization Sector, 1990.Google Scholar
  42. [ITU90c]
    ITU-T Recommendation G.764: Voice Packetization — Packetized Voice Protocol. ITU Telecommunication Standardization Sector, 1990.Google Scholar
  43. [ITU92a]
    ITU-T Recommendation G.728: Coding of speech at 16 kbit/s using low-delay code excited linear prediction. ITU Telecommunication Standardization Sector, 1992.Google Scholar
  44. [ITU92b]
    ITU-T Recommendation T.81: Digital Compression and Coding of continuous-tone still images — Requirements and Guidelines. ITU Telecommunication Standardization Sector, 1992.Google Scholar
  45. [ITU93]
    ITU-T Recommendation H.261: Video codec for audiovisual services at p x 64 kbit/s. ITU Telecommunication Standardization Sector, 1993.Google Scholar
  46. [ITU95a]
    ITU-R Recommendation BT.601: Studio Encoding Parameters of Digital Television for Standard 4:3 and Wide-Screen 16:9 Aspect Rations. ITU Radiocommunication Standardization Sector, 1995.Google Scholar
  47. [ITU95b]
    ITU-T Recommendation H.262: Generic Coding of Moving Pictures and associated Audio: Video. ITU Telecommunication Standardization Sector, 1995.Google Scholar
  48. [ITU96a]
    ITU-T Recommendation G.114: General Characteristics of International Telephone Connections and International Telephone Circuits: One-Way Transmission Time. ITU Telecommunication Standardization Sector, 1996.Google Scholar
  49. [ITU96b]
    ITU-T Recommendation G.723.1: Dual rate speech coder for multimedia communications transmitting at 5.3 and 6.3 kbit/s. ITU Telecommunication Standardization Sector, 1996.Google Scholar
  50. [ITU96c]
    ITU-T Recommendation G.729: Coding of speech at 8 kbit/s using conjugate-structure algebraic-code-excited linear prediction (CS-ACELP). ITU Telecommunication Standardization Sector, 1996.Google Scholar
  51. [ITU96d]
    ITU-T Recommendation P.800: Methods of subjective determination of transmission quality. ITU Telecommunication Standardization Sector, 1996.Google Scholar
  52. [ITU98]
    ITU-T Recommendation T.87: Lossless and near-lossless compression of continuous-tone still images — Baseline. ITU Telecommunication Standardization Sector, 1998.Google Scholar
  53. [ITU99]
    ITU-T Recommendation G.722.1: Coding at 24 and 32 kbit/s for hands-free operation in systems with low frame loss. ITU Telecommunication Standardization Sector, 1999.Google Scholar
  54. [ITU03a]
    ITU-T Recommendation G.722.2: Wideband coding of speech at around 16 kbit/s using Adaptive Multi-Rate Wideband (AMR-WB). ITU Telecommunication Standardization Sector, 2003.Google Scholar
  55. [ITU03b]
    ITU-T Recommendation P.800.1: Mean Opinion Score (MOS) technology. ITU Telecommunication Standardization Sector, 2003.Google Scholar
  56. [ITU05a]
    ITU-T Recommendation H.263: Video coding for low bit rate communication. ITU Telecommunication Standardization Sector, 2005.Google Scholar
  57. [ITU05b]
    ITU-T Recommendation H.264: Advanced video coding for generic audiovisual services. ITU Telecommunication Standardization Sector, 2005.Google Scholar
  58. [IMM95]
    Iwakami, N. et al.: High-Quality Audio-Coding at Less Than 64 kbit/s by Using Transform-Domain Weighted Interleave Vector Quantization (TWINVQ). Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, 5:3095–3098, 1995.Google Scholar
  59. [KaK02]
    Kammeyer, K. und Kroschel, K.: Digitale Signalverarbeitung — Filterung und Spektralanalyse mit MATLAB-Übungen. Fünfte Auflage. Wiesbaden: Teubner 2002.Google Scholar
  60. [Kot33]
    Kotel’nikov, V.: On the transmission capacity of “ether” and wire in electrocommunications. Izd. Red. Upr. Svyazzi RKKA, 1933.Google Scholar
  61. [Lie03]
    Liebchen, T.: MPEG-4 Lossless Coding for High-Definition Audio. Audio Engineering Society (AES) Convention Paper 5872 — Preprint, 2003.Google Scholar
  62. [Lie04]
    Liebchen, T.: An Introduction to MPEG-4 Audio Lossless Coding. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, 3:1012–1015, 2004.Google Scholar
  63. [LMH05]
    Liebchen et al.: The MPEG-4 Audio Lossless Coding (ALS) Standard — Technology and Applications. Audio Engineering Society (AES) Convention Paper 6589 — Preprint, 2005.Google Scholar
  64. [LBG80]
    Linde, Y. et al.: An Algorithm for Vector Quantizer Design. IEEE Transactions on Communications, 28(1):84–95, 1980.MathSciNetCrossRefGoogle Scholar
  65. [Mal89]
    Mallat, S.: A Theory for Multiresolution Signal Decomposition: The Wavelet Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7):674–693, 1989.MATHCrossRefGoogle Scholar
  66. [NC302]
    NC3A Technical Note TN-881: Future NATO Narrow Band Voice Coder Selection. NATO Consultation, Command and Control Agency, 2002.Google Scholar
  67. [ODM96]
    OpenDML AVI M-JPEG File Format Subcommittee: OpenDML AVI File Format Extensions, Version 1.02, 1996.Google Scholar
  68. [Pan95]
    Pan, D.: A Tutorial on MPEG/Audio Compression. IEEE Multimedia Journal, 2(2):60–74, 1995.CrossRefGoogle Scholar
  69. [PeK95]
    Pereira, F, Koenen, R.: Very low bitrate audiovisual applications. Signal Processing: Image Communication, 9(1):55–77, 1996.CrossRefGoogle Scholar
  70. [Pur99]
    Purnhagen, H.: Advances in Parametric Audio Coding. Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, pp. 31–34, 1999.Google Scholar
  71. [RiL79]
    Rissanen, J., Langdon, G.: Arithmetic Coding. IBM Journal of Research and Development, 23(2):149–162, 1979.MATHMathSciNetCrossRefGoogle Scholar
  72. [RoZ72]
    Rocca, F., Zanoletti, S.: Bandwidth reduction via movement compensation on a model of the random video process. IEEE Transactions on Communications, 20(5):960–965, 1972.CrossRefGoogle Scholar
  73. [SaP96]
    Said A., Pearlman, W.: A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Transactions on Circuits and Systems for Video Technology, 6(3):243–249, 1996.CrossRefGoogle Scholar
  74. [Shn48]
    Shannon, C.E.: A mathematical theory of communication. Bell System Technical Journal, 27:379–423; 623–656, 1948.MathSciNetMATHGoogle Scholar
  75. [Shp93]
    Shapiro, J.: Embedded image coding using zerotrees of wavelet coefficients. IEEE Transactions on Signal Processing, 41(12):3445–3462, 1993.MATHCrossRefGoogle Scholar
  76. [SMP98]
    SMPTE 308M: SMPTE Standard for Television — MPEG-2 4:2:2 Profile at High Level. Society of Motion Picture and Television Engineers, 1998.Google Scholar
  77. [STL04]
    Sullivan, G. et al.: The H.264/AVC Advanced Video Coding Standard: Overview and Introduction to the Fidelity Range Extensions. Proceedings of the International Society for Optical Engineering, 5558:53–74, 2004.MathSciNetGoogle Scholar
  78. [Tau00]
    Taubman, D.: High performance scalable image compression with EBCOT. IEEE Transactions on Image Processing, 9(7):1158–1170, 2000.CrossRefGoogle Scholar
  79. [UnB03]
    Unser, M., Blu, T.: Mathematical Properties of the JPEG2000 Wavelet Filters. IEEE Transaction on Image Processing, 12(9):1080–1090, 2003.MathSciNetCrossRefGoogle Scholar
  80. [Wal91]
    Wallace, G.: The JPEG still picture compression standard. Communications of the ACM, 34(4):32–44, 1991.CrossRefGoogle Scholar
  81. [WNW94]
    Wang, S. et al.: Vector-quantization-based video codes for software-only playback on personal computers. Multimedia Systems, 2:191–203, 1994.MATHCrossRefGoogle Scholar
  82. [Wan84]
    Wang, Z.: Fast Algorithms for the Discrete W Transform and for the Discrete Fourier Transform. IEEE Transactions on Acoustics, Speech, and Signal Processing, 32:803–816, 1984.MATHCrossRefGoogle Scholar
  83. [Wei00]
    Weinberger, M.: The LOCO-I Lossless Image Compression Algorithm: Principles and Standardization into JPEG-LS. IEEE Transaction on Image Processing, 9(8):1309–1324, 2000.CrossRefGoogle Scholar
  84. [Wie03]
    Wiegand, T.: Overview of the H.264/AVC Video Coding Standard. IEEE Transaction on Circuits and Systems for Video Technology, 13(7):560–576, 2003.CrossRefGoogle Scholar
  85. [XRO99]
    Xiong, Z. et al.: A Comparative Study of DCT-and Wavelet-Based Image Coding. IEEE Transactions on Circuits and Systems for Video Technology, 9(5):692–695, 1999.CrossRefGoogle Scholar
  86. [YLR04]
    Yu, R. et al.: A Scalable Lossy to Lossless Audio Coder for MPEG-4 Lossless Audio Coding. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, 3:1004–1007, 2004.Google Scholar
  87. [ZwF99]
    Zwicker, E., Fastl, H.: Psychoacoustics: Facts and Models. Zweite, aktualisierte Auflage. Berlin u. Heidelberg: Springer 1999.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jan Schulz

There are no affiliations available

Personalised recommendations