Skip to main content

Photoaging

  • Chapter
  • 962 Accesses

15.10 Summary

In summary, multiple studies have documented the efficacy of topical agents (retinoids, antioxidants, and topical bleaching agents) used in combination with superficial and/or mediumdepth or deep peeling agents for photodamage. The treatment of photodamage requires a multifaceted approach incorporating sun protection, antioxidants, exfoliating agents, retinoids, and resurfacing procedures. Despite the evolution of new and advanced laser technologies, chemical peeling remains a viable, efficacious, and cost-effective treatment for photodamage.

Keywords

  • Glycolic Acid
  • Actinic Keratose
  • Azelaic Acid
  • Kojic Acid
  • Ascorbyl Palmitate

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

The author has no financial interest in any of the products or equipment mentioned in this chapter.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/3-540-30223-9_15
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-30223-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bhawan J, Andersen W, Lee J, Labadie R, Solares G (1995) Photoaging versus intrinsic aging: a morphologic assessment of facial skin. J Cutan Pathol 22:154–159

    PubMed  CAS  Google Scholar 

  2. Gilchrest BA (1996) A review of skin aging and its medical therapy. Br J Dermatol 135:867–875

    PubMed  CrossRef  CAS  Google Scholar 

  3. Lavker RM (1995) Cutaneous aging: chronologic versus photoaging. In: Gilchrest BA (ed) Photodamage. Blackwell Science, Cambridge, MA, pp 123–135

    Google Scholar 

  4. Vayalil PK, Mittal A, Hara Y, Elmets CA, Katiyar SK (2004) Green tea polyphenols prevent ultraviolet light-induced oxidative damage and matrix metalloproteinases expression in mouse skin. J Invest Dermatol 122:1480–1487

    PubMed  CrossRef  CAS  Google Scholar 

  5. Spencer JM (2004) Premalignant manifestations of photoaging: actinic keratoses and atypical nevi. In: Goldberg DJ (ed) Photodamaged skin. Marcel Dekker, Inc., New York, pp 1–16

    Google Scholar 

  6. Grimes PE (2004) Benign manifestations of photodamage: ethnic skin types. In: Goldberg DJ (ed) Photodamaged skin. Marcel Dekker, Inc., New York, pp 175–196

    Google Scholar 

  7. Washington CV, Grimes PE (2003) Incidence and prevention of skin cancer. Cosmet Dermatol 16(S3):46–48

    Google Scholar 

  8. Glogau RG (1994) Chemical peeling and aging skin. J Geriatr Dermatol 2:30–35

    Google Scholar 

  9. Fulton JE, Porumb S (2004) Chemical peels: their place within the range of resurfacing techniques. Am J Clin Dermatol 5:179–187

    PubMed  Google Scholar 

  10. Seite S, Colige A, Piquemal-Vivenot P, Montastier C, Fourtanier A, Lapiere C, Nusgens B (2000) A full-UV spectrum absorbing daily use cream protects human skin against biological changes occurring in photoaging. Photodermatol Photoimmunol Photomed 16:147–155

    PubMed  CAS  Google Scholar 

  11. Kang S, Leyden JJ, Lowe NJ, et al (2001) Tazarotene cream for the treatment of facial photodamage. Arch Dermatol 137:1597–1604

    PubMed  CAS  Google Scholar 

  12. Chandraratna RAS (1996) Tazarotene: first of a new generation of receptor-selective retinoids. Br J Dermatol 135:18–25

    PubMed  CAS  Google Scholar 

  13. Weinstein GD, Nigra TP, Pochi PE et al (1991) Topical tretinoin for treatment of photodamaged skin: a multicenter study. Arch Dermatol 127:659–665

    PubMed  CrossRef  CAS  Google Scholar 

  14. Levin AA, Sturzenbecker LJ, Kazmer S, et al (1992) 9-cis Retinoic acid stereoisomer binds and activates the nuclear receptor RXR alpha. Nature 355:359–361

    PubMed  CrossRef  CAS  Google Scholar 

  15. Griffiths CE, Kang S, Ellis CN, Kim KJ, Finkel LJ, Ortiz-Ferrer LC, White GM, Hamilton TA, Voorhees JJ (1995) Two concentrations of topical tretinoin (retinoic acid) cause similar improvement of photoaging but different degrees of irritation. A double-blind, vehicle-controlled comparison of 0.1% and 0.025% tretinoin creams. Arch Dermatol 131:1037–1044

    PubMed  CrossRef  CAS  Google Scholar 

  16. Griffiths CEM, Goldfarb MT, Finkel LJ, et al (1994) Topical tretinoin (retinoic acid) treatment of hyperpigmented lesions associated with photoaging in Chinese and Japanese patients: a vehicle-controlled trial. J Am Acad Dermatol 30:76–84

    PubMed  CAS  CrossRef  Google Scholar 

  17. Tadaki T, Watanabe M, Kumasaka K, Tanita Y, Kato T, Tagami H, Horii I, Yokoi T, Nakayama Y, Kligman AM (1993) The effect of topical tretinoin on the photodamaged skin of the Japanese. Tohoku J Exp Med 169:131–139

    PubMed  CAS  CrossRef  Google Scholar 

  18. Griffiths CE, Russman AN, Majmudar G, Singer RS, Hamilton TA, Voorhees JJ (1993) Restoration of collagen formation in photodamaged human skin by tretinoin (retinoic acid) N Engl J Med 329:530–535

    PubMed  CrossRef  CAS  Google Scholar 

  19. Tzaneva S, Seeber A, Honigsmann H, Tanew A (2002) A comparison of psoralen plus ultraviolet A (PUVA) monotherapy, tacalcitol plus PUVA and tazarotene plus PUVA in patients with chronic plaque-type psoriasis. Br J Dermatol 147:748–753

    PubMed  CrossRef  CAS  Google Scholar 

  20. Sefton J, Kligman AM, Kopper SC, Lue JC, Gibson JR (2004) Photodamage pilot study: a double-blind, vehicle-controlled study to assess the efficacy and safety of tazarotene 0.1% gel. J Am Acad Dermatol 43:656–663

    Google Scholar 

  21. Cosmetic Ingredient Review (1987) Final report on the safety assessment of retinyl palmitate and retinol. J Am Coll Toxicol 6:279–320

    Google Scholar 

  22. Suzuki S, Miyachi Y, Niwa Y, Isshiki N (1989) Significance of reactive oxygen species in distal flap necrosis and its salvage with liposomal SOD. Br J Plast Surg 42:559–564

    PubMed  CrossRef  CAS  Google Scholar 

  23. Kang S, Duell EA, Fisher GJ, et al (1995) Application of retinol to human skin in vivo induces epidermal hyperplasia and cellular retinoid binding proteins characteristic of retinoic acid but without measurable retinoic acid levels or irritation. J Invest Dermatol 105:549–556

    PubMed  CrossRef  CAS  Google Scholar 

  24. Bissett DL, Chatterjee R, Hannon DP (1990) Photoprotective effect of superoxide-scavenging antioxidants against ultraviolet radiation-induced chronic skin damage in the hairless mouse. Photodermatol Photoimmunol Photomed 7:56–62

    PubMed  CAS  Google Scholar 

  25. Darr D, Combs S, Dunston S, Manning T, Pinnel S (1992) Topical vitamin C protects porcine skin from ultraviolet radiation-induced damage. Br J Dermatol 127:247–253

    PubMed  CAS  Google Scholar 

  26. Black HS (1987) Potential involvement of free radical reactions in ultraviolet light mediated cutaneous damage. Photochem Photobiol 46:213–221

    PubMed  CAS  Google Scholar 

  27. Eberlein-Konig B, Placzek M, Pryzbilla B (1998) Protective effect against sunburn of combined systemic ascorbic acid (vitamin C) and d-alphatocopherol (vitamin E). J Am Acad Dermatol 38:45–48

    PubMed  CAS  Google Scholar 

  28. Colvin RM, Pinnell SR (1996) Topical vitamin C in aging. Clin Dermatol 14:227–234

    Google Scholar 

  29. Bachowski GJ, Girotti AW (1988) Light-stimulated formation of hydrogen peroxide and hydroxyl radical in the presence of uroporphyrin and ascorbate. Free Radic Biol Med 5:3–6

    PubMed  CrossRef  CAS  Google Scholar 

  30. Bacq ZM, Fischer P (1957) The action of various drugs on the suprarenal response of the rat to totalbody x-irradiation. Radiat Res 7:365–372

    PubMed  CAS  Google Scholar 

  31. Frei B, England L, Amos B (1989) Ascorbate is an outstanding anti-oxidant in human blood plasma. Proc Natl Acad Sci USA 86:6377–6381

    PubMed  CAS  Google Scholar 

  32. Koch CJ, Biaglow JE (1978) Toxicity, radiation sensitivity modification, and metabolic effects of dehydroascorbate and ascorbate in mammalian cells. J Cell Physiol 94:299–306

    PubMed  CrossRef  CAS  Google Scholar 

  33. Bartlett MK, Jones CM, Ryan AE (1942) Vitamin C and wound healing: II. Ascorbic acid content and tensile strength of healing wounds in human beings. N Engl J Med 226:474–481

    CAS  Google Scholar 

  34. Padh H (1990) Cellular functions of ascorbic acid. Biochem Cell Biol 68:1166–1173

    PubMed  CAS  CrossRef  Google Scholar 

  35. Abt AF, von Schurching S (1961) Catabolism of Lascorbic-1-C acid as a measure of its utilization in the intact and wounded guinea pig on scorbutic maintenance, and saturation diets. Ann N Y Acad Sci 92:148–158

    PubMed  CAS  Google Scholar 

  36. Fitzpatrick RE, Rostan EF (2002) Double blind, half-face study comparing topical vitamin C and vehicle for rejuvenation of photodamage. Dermatol Surg 28:231–236

    PubMed  CrossRef  Google Scholar 

  37. Perricone NV (1993) The photoprotective and antiinflammatory effects of topical ascorbyl palmitate. J Ger Dermatol 1:5–10

    Google Scholar 

  38. Moy LS, Murad H, Moy RL (1993) Glycolic acid peels for the treatment of wrinkles and photoaging. J Dermatol Surg Oncol 19:243–246

    PubMed  CAS  Google Scholar 

  39. Murad H, Shamban AT, Moy RL (1995) The use of glycolic acid as a peeling agent. Dermatol Clin 13:285–307

    PubMed  CAS  Google Scholar 

  40. Ditre CM, Griffin TD, Murphy GF, Sueki H, Telegan B, Johnson WC, Yu RJ, Van Scott EJ (1996) Effects of alpha-hydroxy acids on photoaged skin: a pilot clinical, histologic, and ultrastructural study. J Am Acad Dermatol 34(2 Pt 1):187–195

    PubMed  CAS  Google Scholar 

  41. Grimes PE, Green BA, Wildnauer RH, Edison BL (2004) The use of polyhydroxy acids (PHAs) in photoaged skin. Cutis 73[Suppl 2]:3–13

    PubMed  Google Scholar 

  42. Jimbow K, Obata H, Pathak MA, et al (1974) Mechanism of depigmentation by hydroquinone. J Inv Dermatol 62:436–449

    CrossRef  CAS  Google Scholar 

  43. Amer M, Metwalli M (1998) Topical hydroquinone in the treatment of some hyperpigmentary disorders. Int J Dermatol 37:449–450

    PubMed  CrossRef  CAS  Google Scholar 

  44. Grimes PE (1997) Melasma: dermatology: cutaneous medicine and surgery in primary care. Harcourt, Brace, and Co., pp 151–153

    Google Scholar 

  45. Findlay GH, Morrison JG, Simson IW (1975) Exogenous ochronosis and pigmented colloid milium from hydroquinone bleaching creams. Br J Dermatol 93:613–622

    PubMed  CAS  Google Scholar 

  46. Mahe A, Ly F, Aymard G, Dangou JM (2003) Skin diseases associated with the cosmetic use of bleaching products in women from Dakar, Senegal. Br J Dermatol 148:493–500

    PubMed  CrossRef  CAS  Google Scholar 

  47. Bellew SG, Alster TS (2004) Treatment of exogenous ochronosis with a Q-switched alexandrite (755 nm) laser. Dermatol Surg 30(4 Pt 1):555–558

    PubMed  Google Scholar 

  48. Fitton A, Goa KL (1991) Azelaic acid. Drugs 41:780–798

    PubMed  CAS  Google Scholar 

  49. Briganti S, Camera E, Picardo M (2003) Chemical and instrumental approaches to treat hyperpigmentation. Pigment Cell Res 16:101–110

    PubMed  CrossRef  Google Scholar 

  50. Stegman SJ (1986) Medium-depth chemical peeling: digging beneath the surface. J Dermatol Surg Oncol 12:1245–1246

    PubMed  CAS  Google Scholar 

  51. Baker TJ, Gordon HL, Mosienko P, et al (1974) Longterm histological study of skin after chemical face peeling. Plast Reconstr Surg 53:522

    PubMed  CAS  Google Scholar 

  52. Behin F, Feuerstein SS, Marovitz WF (1977) Comparative histological study of minipig skin after chemical peel and dermabrasion. Arch Otolaryngol 103:271–277

    PubMed  CAS  Google Scholar 

  53. Van Scott EJ, Yu RJ (1984) Hyperkeratinization, corneocyte cohesion, and alpha hydroxy acids. J Am Acad Dermatol 11(5 Pt 1):867–879

    PubMed  Google Scholar 

  54. Moy LS, Howe K, Moy RL (1996) Glycolic acid modulation of collagen production in human skin fibroblast cultures in vitro. Dermatol Surg 22(5):439–441

    PubMed  CAS  Google Scholar 

  55. Moy LS, Peace S, Moy RL (1996) Comparison of the effect of various chemical peeling agents in a minipig model. Dermatol Surg 22:429–432

    PubMed  CAS  Google Scholar 

  56. Newman N, Newman A, Moy LS, Babapour R, Harris AG, Moy RL (1996) Clinical improvement of photoaged skin with 50% glycolic acid. A doubleblind vehicle-controlled study. Dermatol Surg 22:455–460

    PubMed  CrossRef  CAS  Google Scholar 

  57. Piacquadio D, Dobry M, Hunt S, Andree C, Grove G, Hollenbach KA (1996) Short contact 70% glycolic acid peels as a treatment for photodamaged skin. A pilot study. Dermatol Surg 22:449–452

    PubMed  CrossRef  CAS  Google Scholar 

  58. Kligman D, Kligman AM (1998) Salicylic acid peels for the treatment of photoaging. Dermatol Surg 24:325–328

    PubMed  CrossRef  CAS  Google Scholar 

  59. Gladstone HB, Nguyen SL, Williams R, Ottomeyer T, Wortzman M, Jeffers M, Moy RL (2000) Efficacy of hydroquinone cream (USP 4%) used alone or in combination with salicylic acid peels in improving photodamage on the neck and upper chest. Dermatol Surg 26:333–337

    PubMed  CAS  Google Scholar 

  60. Dinner MI, Artz JS (1998) The art of the trichloroacetic acid chemical peel. Clin Plast Surg 25:53–62

    PubMed  CAS  Google Scholar 

  61. Matarasso SL, Glogau RG (1991) Chemical face peels. Dermatol Clin 9:131–150

    PubMed  CAS  Google Scholar 

  62. Monheit GD (1989) The Jessner’s + TCA peel: a medium-depth chemical peel. J Dermatol Surg Oncol 15:945–950

    PubMed  CAS  Google Scholar 

  63. Coleman WP 3rd, Futrell JM (1994) The glycolic acid trichloroacetic acid peel. J Dermatol Surg Oncol 20(1):76–80

    PubMed  Google Scholar 

  64. Tse Y, Ostad A, Lee HS, Levine VJ, Koenig K, Kamino H, Ashinoff R (1996) A clinical and histologic evaluation of two medium-depth peels. Glycolic acid versus Jessner’s trichloroacetic acid. Dermatol Surg 22:781–786

    PubMed  CrossRef  CAS  Google Scholar 

  65. El Samahy MH, Ghoz MM, Ramzy N (1998) Morphological investigation of chemical peel on photodamaged facial skin Int J Cos Sci 20:269–282

    Google Scholar 

  66. Lawrence N, Cox SE, Cockerell CJ, Freeman RG, Cruz PD Jr (1995) A comparison of the efficacy and safety of Jessner’s solution and 35% trichloroacetic acid vs. 5% fluorouracil in the treatment of widespread facial actinic keratoses. Arch Dermatol 131:176–181

    PubMed  CrossRef  CAS  Google Scholar 

  67. Ghersetich I, Brazzini B, Peris K, Cotellessa C, Manunta T, Lotti T (2004) Pyruvic acid peels for the treatment of photoaging. Dermatol Surg 30:32–36

    PubMed  CrossRef  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grimes, P.E. (2006). Photoaging. In: Tosti, A., Grimes, P.E., De Padova, M.P. (eds) Color Atlas of Chemical Peels. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30223-9_15

Download citation

  • DOI: https://doi.org/10.1007/3-540-30223-9_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21279-9

  • Online ISBN: 978-3-540-30223-0

  • eBook Packages: MedicineMedicine (R0)