Skip to main content

Palatal Wound Healing:The Effects of Scarring on Growth

  • Chapter
Cleft Lip and Palate

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 569.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bardach J. Lip repair and facial growth in beagles. Plast Reconstr Surg 1989; 83:1079–1080.

    PubMed  CAS  Google Scholar 

  2. Bardach J, Eisbach KJ. The influence of primary unilateral cleft lip repair on facial growth. Cleft Palate J 1977; 14:88–97.

    PubMed  CAS  Google Scholar 

  3. Bardach J, Kelly KM, Salyer KE. A comparative study of facial growth following lip and palate repair performed in sequence and simultaneously: An experimental study in beagles. Plast Reconstr Surg 1993; 91:1008–1016.

    PubMed  CAS  Google Scholar 

  4. Bardach J, Klalusner EC, Eisbach KJ. The relationship between lip pressure and facial growth after cleft lip repair. Cleft Palate J 1979; 16:137–146.

    PubMed  CAS  Google Scholar 

  5. Bardach J, Roberts DM, Yale R, Rosewall D, Mooney M. The influence of simultaneous cleft lip and palate repair on facial growth in rabbits. Cleft Palate J 1980; 17:309–318.

    PubMed  CAS  Google Scholar 

  6. Bardach, J. The influence of cleft lip repair on facial growth. Cleft Palate J 1990; 27:76–78.

    Article  PubMed  CAS  Google Scholar 

  7. Berkowitz S. Cleft lip and palate research: an updated state of the art. Section III. Orofacial growth and dentistry. Cleft Palate J 1977; 14:288–301.

    PubMed  CAS  Google Scholar 

  8. Bodner L, Grossman N. Autologous cultured mucosal graft to cover large intraoral mucosal defects: a clinical study. J Oral Maxillofac Surg 2003; 61:169–173.

    Article  PubMed  Google Scholar 

  9. Bourke KA, Haase H, Li H, Daley T, Bartold PM. Distribution and synthesis of elastin in porcine gingival and alveolar mucosa. J Periodont Res 2000; 35:361–368.

    Article  PubMed  CAS  Google Scholar 

  10. Butler CE, Navarro FA, Park CS, Orgill DP. Regeneration of neomucosa using cell-seeded collagen-GAG matrices in athymic mice. Ann Plast Surg 2002; 48:298–304.

    Article  PubMed  Google Scholar 

  11. Capelozza Filho FL, Normando AD, da Silva Filho OG. Isolated influences of lip and palate surgery on facial growth: comparison of operated and unoperated males adults with UCLP. Cleft Palate Craniofac J 1996; 33:51–56.

    Article  PubMed  CAS  Google Scholar 

  12. Chu S, Ishikawa H, Kim T, Yoshida S. Analysis of scar tissue distribution on rat palates: a laser Doppler flowmetric study. Cleft Palate Craniofac J 2000; 37:488–496.

    Article  PubMed  CAS  Google Scholar 

  13. Clark RAF. Wound repair: Overview and general considerations. In: Clark RAF (ed.) The molecular and cellular biology of wound repair. New York: Plenum Press; 1996. p. 3–35.

    Google Scholar 

  14. Cooper ML, Andree C, Hansborough JF, Zapata-Sirvent RL, Spielvogel RL. Direct comparison of a cultured composite skin substitute containing human keratinocytes and fibroblasts to an epidermal sheet graft containing human keratinocytes on athymic mice. J Invest Dermatol 1993; 101:811–819.

    Article  PubMed  CAS  Google Scholar 

  15. Cornelissen AMH, Maltha JC, Von den Hoff HW, Kuijpers-Jagtman AM. Palatal mucosal wound healing in the rat. Eur J Oral Sci 1999; 107:344–351

    Article  PubMed  CAS  Google Scholar 

  16. Cornelissen AMH, Maltha JC, Von den Hoff JW, Kuijpers-Jagtman AM. Local injection of IFN-gamma reduces the number of myofibroblasts and the collagen content in palatal wounds. J Dent Res 2000b; 79:1782–1788.

    PubMed  CAS  Google Scholar 

  17. Cornelissen AMH, Stoop R, Von den Hoff HW, Maltha JC, Kuijpers-Jagtman AM. Myofibroblasts and matrix components in healing palatal wounds in the rat. J Oral Pathol Med 2000a; 29:1–7.

    Article  PubMed  CAS  Google Scholar 

  18. Cornelissen AMH, Von den Hoff JW, Maltha JC, Kuijpers-Jagtman AM. Effects of locally injected interferon-beta on palatal mucoperiosteal wound healing. J Oral Pathol Med 2002; 31:518–525.

    Article  PubMed  CAS  Google Scholar 

  19. Dahl E. Craniofacial morphology in congenital clefts of the lip and palate.An X-ray cephalometric study of young adult males. Acta Odont Scand 1970; 28(Suppl. 57):1–167.

    Google Scholar 

  20. Derijcke A, Kuijpers-Jagtman AM, Lekkas C, Hardjowasito W, Latief B. Dental arch dimensions in unoperated adult cleft-palate patients: an analysis of 37 cases. J Craniofac Genet Dev Biol 1994; 14:69–74.

    PubMed  CAS  Google Scholar 

  21. Desmouliere A, Gabbiani G. The role of the myofibroblast in wound healing and fibrocontractive diseases. In: Clark RAF (ed) The molecular and cellular biology of wound repair. New York: Plenum Press; 1996. p. 391–414.

    Google Scholar 

  22. Desmouliere A, Redard M, Darby I, Gabbiani G. Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am J Pathol 1995; 146:56–66.

    PubMed  CAS  Google Scholar 

  23. Duncan MR, Hasan A, Berman B. Pentoxifylline, pentifylline, and interferons decrease type I and III procollagen mRNA levels in dermal fibroblasts: evidence for mediation by nuclear factor 1 down regulation. J Invest Dermatol 1995; 104:282–286.

    Article  PubMed  CAS  Google Scholar 

  24. Ehrlich HP, Rajaratnam JB. Cell locomotion forces versus cell contraction forces for collagen lattice contraction: an in vitro model of wound contraction. Tissue Cell 1990; 22:407–417.

    Article  PubMed  CAS  Google Scholar 

  25. Funato N, Moriyama K, Baba Y, Kuroda T. Evidence of apoptosis induction in myofibroblasts during palatal mucoperiosteal repair. J Dent Res 1999; 78:1511–1517.

    PubMed  CAS  Google Scholar 

  26. Fujioka M, Fujii T. Maxillary growth following atelocollagen implantation on mucoperiosteal denudation of the palatal process in young rabbits: implications for clinical cleft palate repair. Cleft Palate Craniofac J 1997; 34:297–308.

    Article  PubMed  CAS  Google Scholar 

  27. Gabbiani G. The myofibroblast in wound healing and fibrocontractive diseases. J Pathol 2003; 200:500–503.

    Article  PubMed  CAS  Google Scholar 

  28. Graber TM. Craniofacial morphology in cleft palate and cleft lip deformities. Surg Gynec Obs 1949; 88:359–368.

    CAS  Google Scholar 

  29. Granstein RD, Deak MR, Jacques SL, Margolis RJ, Flotte TJ, Whitaker D, Long FH, Amento EP. The systemic administration of gamma interferon inhibits collagen synthesis and acute inflammation in a murine skin wounding model. J Invest Dermatol 1989; 93:18–27.

    Article  PubMed  CAS  Google Scholar 

  30. Graves DT, Nooh N, Gillen T, Davey M, Patel S, Cottrell D, Amar S. IL-1 plays a critical role in oral, but not dermal, wound healing. J Immunol 2001; 167:5316–5320.

    PubMed  CAS  Google Scholar 

  31. Huang D, Chang TR, Aggarwal A, Lee RC, Ehrlich HP. Mechanisms and dynamics of mechanical strengthening in ligament-equivalent fibroblast-populated collagen matrices. Ann Biomed Eng 1993; 21:289–305.

    Article  PubMed  CAS  Google Scholar 

  32. Igarashi M, Irwin CR, Locke M, Mackenzie IC. Construction of large area organotypical cultures of oral mucosa and skin. J Oral Pathol Med 2003; 32:422–430.

    Article  PubMed  CAS  Google Scholar 

  33. In de Braekt MM, van Alphen FA, Kuijpers-Jagtman AM, Maltha JC. Wound healing and wound contraction after palatal surgery and implantation of poly-(L-lactic) acid membranes in beagle dogs. J Oral Maxillofac Surg 1992; 50:359–364.

    Google Scholar 

  34. Izumi K, Feinberg SE, Lida A, Yoshizawa M. Intraoral grafting of an ex vivo produced oral mucosa equivalent: a preliminary report. Int J Oral Maxillofac Surg 2003; 32:188–197.

    Article  PubMed  CAS  Google Scholar 

  35. Kanda T, Funato N, Baba Y, Kuroda T. Evidence for fibroblast growth factor receptors in myofibroblasts during palatal mucoperiosteal repair. Arch Oral Biol 2003; 48:213–221.

    Article  PubMed  CAS  Google Scholar 

  36. Kim T, Ishikawa H, Chu S, Handa A, Iida J, Yoshida S. Constriction of the maxillary dental arch by mucoperiosteal denudation of the palate. Cleft Palate Craniofac J 2002; 39:425–431.

    Article  PubMed  Google Scholar 

  37. Kremenak CR Jr, Huffman WC, Olin WH. Maxillary growth inhibition by mucoperiosteal denudation of palatal shelf bone in non-cleft beagles. Cleft Palate J 1970; 7:817–825.

    PubMed  Google Scholar 

  38. Kuijpers-Jagtman AM, Long Jr RE. State of the art: The influence of surgery and orthopedic treatment on maxillofacial growth and maxillary arch dimensions in patients treated for orofacial clefts. Cleft Palate-Craniofac J 2000; 37:527/1–527/12.

    Google Scholar 

  39. Lambrecht JT, Kreusch T, Schulz L. Position, shape, and dimension of the maxilla in unoperated cleft lip and palate patients: review of the literature. Clin Anat 2000; 13:121–133.

    Article  PubMed  CAS  Google Scholar 

  40. Lee HG, Eun HC. Differences between fibroblasts cultured from oral mucosa and skin: implications to wound healing. J Dermatol Sci 1999; 21:176–182.

    Article  PubMed  CAS  Google Scholar 

  41. Leenstra TS, Kohama GI, Kuijpers-Jagtman AM, Freihofer HPM. Supraperiosteal flap technique versus mucoperiosteal flap technique in cleft palate surgery. Cleft Palate Craniofac J 1996; 33:501–506.

    Article  PubMed  CAS  Google Scholar 

  42. Leenstra TS, Kuijpers-Jagtman AM, Maltha JC, Freihofer HPM. Palatal surgery without denudation of bone favours dentoalveolar development in dogs. Int J Oral Maxillofac Surg 1995b; 24:440–444.

    Article  PubMed  CAS  Google Scholar 

  43. Leenstra TS, Maltha JC, Kuijpers-Jagtman AM, Spauwen PH. Wound healing in beagle dogs after palatal repair without denudation of bone. Cleft Palate Craniofac J 1995a; 32:363–369.

    Article  PubMed  CAS  Google Scholar 

  44. Leenstra TS, Maltha JC, Kuijpers-Jagtman AM. Biodegradation of non-porous films after submucoperiosteal implantation on the palate of beagle dogs. J Mater Sci Mater Med 1995c; 6:445–450.

    Article  CAS  Google Scholar 

  45. Leenstra TS, Kuijpers-Jagtman AM, Maltha JC. The healing process of palatal tissues after palatal surgery with and without implantation of membranes: An experimental study in dogs. J Mater Sci Mater Med 1998; 9:249–255.

    Article  PubMed  CAS  Google Scholar 

  46. Mars M, Houston WJ. A preliminary study of facial growth and morphology in unoperated male unilateral cleft lip and palate subjects. Cleft Palate J 1990; 27:7–10.

    Article  PubMed  CAS  Google Scholar 

  47. McGrath MH, Simon RH. Wound geometry and the kinetics of wound contraction. Plast Reconstr Surg 1983; 72:66–73.

    PubMed  CAS  Google Scholar 

  48. McPherson JM. Polypeptide growth factors: targeted delivery systems. Biomaterials 1997; 18:1201–1225.

    Article  Google Scholar 

  49. Mignatti P, Rifkin DB, Welgus HG, Parks WC. Proteinases and tissue remodeling. In: Clark RAF (ed) The molecular and cellular biology of wound repair. New York: Plenum Press; 1996. p. 427–461.

    Google Scholar 

  50. Minabe M, Kodama T, Hori T, Watanabe Y. Effects of atelocollagen on the wound healing reaction following palatal gingivectomy in rats. J Periodont Res 1989; 24:178–185.

    PubMed  CAS  Google Scholar 

  51. Mio T, Adachi Y, Romberger DJ, Ertl TF, Rennard SI. Regulation of fibroblast proliferation in three-dimensional collagen gel matrix. In Vitro Cell Dev Biol Anim 1996; 32:427–433.

    CAS  Google Scholar 

  52. Moriyama T, Asahina I, Ishii M, Oda M, Ishii Y, Enomoto S. Development of composite cultured oral mucosa utilizing collagen sponge matrix and contracted collagen gel: a preliminary study for clinical applications. Tissue Eng 2001; 7:415–427.

    Article  PubMed  CAS  Google Scholar 

  53. Nakato H, Kimata K. Heparan sulphate fine structure and specificity of proteoglycan functions. Biochim Biophys Acta 2002; 1573:312–318.

    PubMed  CAS  Google Scholar 

  54. Nedelec B, Dodd CM, Scott PG, Ghahary A, Tredget EE. Effect of interferon-alpha2b on guinea pig wound closure and the expression of cytoskeletal proteins in vivo. Wound Repair Regen 1998; 6:202–212.

    Article  PubMed  CAS  Google Scholar 

  55. Nukumi K, Masuda M, Obata A, Yumoto E. Differences in expression of basic fibroblast growth factor during wound healing between oral mucosa and skin. Wound Repair Regen 2004; 12:A7.

    Article  Google Scholar 

  56. Oda Y, Kagami H, Ueda M. Accelerating effects of basic fibroblast growth factor on wound healing of rat palatal mucosa. J Oral Maxillofac Surg 2004; 62:73–80.

    Article  PubMed  Google Scholar 

  57. Okazaki M, Yoshimura K, Uchida G, Harii K. Elevated expression of hepatocyte and keratinocyte growth factor in cultured buccal-mucosa-derived fibroblasts compared with normal-skin-derived fibroblasts. J Dermatol Sci 2002; 30:108–115.

    Article  PubMed  CAS  Google Scholar 

  58. Ophof R, van Rheden RE, Von den Hoff JW, Schalkwijk J, Kuijpers-Jagtman AM. Oral keratinocytes cultured on dermal matrices form a mucosa-like tissue. Biomaterials 2002; 23:3741–3748.

    Article  PubMed  CAS  Google Scholar 

  59. Ortiz-Monasterio F, Serrano A, Barrera G, Rodriguez-Hoffman H, Vinageras E. A study of untreated adult cleft palate patients. Plast Reconstr Surg 1966; 38:36–41.

    PubMed  CAS  Google Scholar 

  60. Perko MA. Primary closure of the cleft palate using a palatal mucosal flap: an attempt to prevent growth impairment. J Maxillofac Surg 1974; 2:40–43.

    Article  PubMed  CAS  Google Scholar 

  61. Pomahac B, Svensjo T, Yao F, Brown H, Eriksson E. Tissue engineering of skin. Crit Rev Oral Biol Med 1998; 9:333–344.

    PubMed  CAS  Google Scholar 

  62. Rheinwald JG, Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. 1975; Cell 6:331–344.

    Article  PubMed  CAS  Google Scholar 

  63. Rojas AI, Ahmed AR. Adhesion receptors in health and disease. Crit Rev Oral Biol Med 1999; 10:337–358.

    PubMed  CAS  Google Scholar 

  64. Ross RB. Treatment variables affecting facial growth in complete unilateral cleft lip and palate. Part 1: treatment affecting growth. Cleft Palate J 1987a; 24:5–23.

    PubMed  CAS  Google Scholar 

  65. Ross RB. Treatment variables affecting facial growth in complete unilateral cleft lip and palate. Part 2: presurgical orthopedics. Cleft Palate J 1987b; 24:24–30.

    Google Scholar 

  66. Ross RB. Treatment variables affecting facial growth in complete unilateral cleft lip and palate. Part 3: alveolus repair and bone grafting. Cleft Palate J 1987c; 24:33–44.

    Google Scholar 

  67. Ross RB. Treatment variables affecting facial growth in unilateral cleft lip and palate. Part 4: repair of the cleft lip. Cleft Palate J 1987d; 24:45–53.

    Google Scholar 

  68. Ross RB. Treatment variables affecting facial growth in unilateral cleft lip and palate. Part 5: Timing of palate repair. Cleft Palate J 1987e; 24:54–63.

    Google Scholar 

  69. Ross RB. Treatment variables affecting facial growth in cleft lip and palate. Part 6: Techniques of palate repair. Cleft Palate J 1987f; 24:64–70.

    Google Scholar 

  70. Ross RB. Treatment variables affecting facial growth in cleft lip and palate. Part 7: an overview of treatment and facial growth. Cleft Palate J 1987g; 24:71–77.

    Google Scholar 

  71. Rudolph R, Vande Berg J, Ehrlich HP. Wound contraction and scar contracture. In: Cohen IK, Diegelman RT, Lindblad WJ (eds.) Wound healing: biochemical and physical aspects. Philadelphia: WB Saunders; 1992. p. 96–114.

    Google Scholar 

  72. Rygh P, Tindlund RS. Orthopedic expansion and protraction of the maxilla in cleft palate patients-a new treatment rationale. Cleft Palate J 1982; 19:104–112.

    PubMed  CAS  Google Scholar 

  73. Schendel SA, Pearl RM, De Armond SJ. Pathophysiology of cleft lip muscles following the initial repair. Plast Reconstr Surg 1991; 88:19–200.

    Google Scholar 

  74. Searls JC, Kremenak CR, Rittman BR. Quantitative characterization of changes in cellularity and collagen fiber size in contracting palatal wounds. Cleft Palate J 1979; 16:373–380.

    PubMed  CAS  Google Scholar 

  75. Selliseth NJ, Selvig KA (1995). Revascularization of an excisional wound in gingiva and oral mucosa. A scanning electron microscopic study using corrosion casts in rats. Scanning Microscop 9:455–467.

    CAS  Google Scholar 

  76. Semb G, Shaw WC. Facial growth in orofacial clefting disorders. In: Turvey TA, Vig KWL, Fonseca RJ (eds.) Facial clefts and craniosynostosis. Principles and management. Philadelphia: WB Saunders; 1996. p. 28–56.

    Google Scholar 

  77. Semb G, Shaw WC. Facial growth after different methods of surgical intervention in patients with cleft lip and palate. Acta Odontol Scand 1998; 56:352–355.

    Article  PubMed  CAS  Google Scholar 

  78. Shaw WC, Semb G, Nelson P, Brattström V, Møsted K, Prahl-Andersen B. The Eurocleft Project 1996–2000. Amsterdam: IOS Press; 2000.

    Google Scholar 

  79. Skalak R, Fox CF. Preface. In: Skalak R, Fox CF (eds.) Tissue engineering. New York: Alan R Liss; 1988

    Google Scholar 

  80. Sloan P. Current concepts of the role of fibroblasts and extracellular matrix in wound healing and their relevance to oral implantology. J Dent 1991; 19:107–109.

    Article  PubMed  CAS  Google Scholar 

  81. Squier CA, Hill MW. Oral mucosa. In: Ten Cate AR (ed.) Oral histology: development, structure and function. 5th ed. St. Louis: Mosby Year Book; 1998. p. 345–385.

    Google Scholar 

  82. Stephens P, Davies KJ, Occleston N, Pleass RD, Kon C, Daniels J, Khaw PT, Thomas DW. Skin and oral fibroblasts exhibit phenotypic differences in extracellular matrix reorganization and matrix metalloproteinase activity. Br J Dermatol 2001; 144:229–237.

    Article  PubMed  CAS  Google Scholar 

  83. Sumi Y, Hata KI, Sawaki Y, Mizuno H, Ueda M. Clinical application of cultured oral epithelium for palatal wounds after palatoplasty: a preliminary report. Oral Dis 1999; 5:307–312.

    Article  PubMed  CAS  Google Scholar 

  84. Szpaderska AM, Zuckerman JD, DiPietro LA. Differential injury responses in oral and cutaneous wounds. J Dent Res 2003; 82:621–626.

    PubMed  CAS  Google Scholar 

  85. Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA. Myofibroblasts and mechano-regulation of connective tissue remodeling. Nat Rev Mol Cell Biol 2002; 3:349–363.

    Article  PubMed  CAS  Google Scholar 

  86. Tsai CY, Ueda M, Hata K, Horie K, Hibino Y, Sugimura Y, Toriyama K, Torii S. Clinical results of cultured epithelial cell grafting in the oral and maxillofacial region. J Craniomaxillofac Surg 1997; 25:4–8.

    PubMed  CAS  Google Scholar 

  87. Van Beurden HE, Snoek PAM, Von den Hoff JW, Torensma R, Kuijpers-Jagtman AM. Fibroblast subpopulations in intraoral wound healing. Wound Rep Regen 2003; 11:55–63.

    Article  Google Scholar 

  88. Wijdeveld MGMM, Grupping EM, Kuijpers-Jagtman AM, Maltha JC. Maxillary arch dimensions after palatal surgery at different ages on beagle dogs. J Dent Res 1989; 68:1105–1109.

    PubMed  CAS  Google Scholar 

  89. Wijdeveld MGMM, Maltha JC, Grupping EM, De Jonge J, Kuijpers-Jagtman AM. A histological study of tissue response to simulated cleft palate surgery at different ages in beagle dogs. Arch Oral Biol 1991; 36:837–843.

    Article  PubMed  CAS  Google Scholar 

  90. Willimson JS, Snelling CF, Clugston P, Macdonald IB, Germann E. Cultured epithelial autograft: five years of clinical experience with twenty-eight patients. J Trauma 1995; 39:309–319.

    Google Scholar 

  91. Yamada KM, Clark RAF. Provisional matrix. In: Clark RAF (ed.) The molecular and cellular biology of wound repair. New York: Plenum Press; 1996. p. 51–82.

    Google Scholar 

  92. Yokozeki M, Baba Y, Shimokawa H, Moriyama K, Kuroda T. Interferon-γ inhibits the myofibroblastic phenotype of rat palatal fibroblasts induced by transforming growth factor β1 in vitro. FEBS Lett 1999; 442:61–64.

    Article  PubMed  CAS  Google Scholar 

  93. Yokozeki M, Moriyama K, Shimokawa H, Kuroda T. Transforming growth factor-beta 1 modulates myofibroblastic phenotype of rat palatal fibroblasts in vitro. Exp Cell Res 1997; 231:328–336.

    Article  PubMed  CAS  Google Scholar 

  94. Zelles T, Purushotham KR, Macaulay SP, Oxford GE, Humphreys-Beher MG. Saliva and growth factors: the fountain of youth resides in us all. J Dent Res 1995; 74:1826–1832.

    PubMed  CAS  Google Scholar 

  95. Adzick NS, Longaker MT. Animal models for the study of fetal tissue repair. J Surg Res 1991; 51:216–222.

    Article  PubMed  CAS  Google Scholar 

  96. al-Khateeb T, Stephens P, Shepherd JP, Thomas DW. An investigation of preferential fibroblast wound repopulation using a novel in vitro wound model. J Periodontol 1997; 68:1063–1069.

    PubMed  CAS  Google Scholar 

  97. Grinnell F. Fibroblasts, myofibroblasts and wound contraction. J Cell Biol 1994; 124:401–404.

    Article  PubMed  CAS  Google Scholar 

  98. Irwin CR, Myrillas T, Smyth M, Doogan J, Rice C, Schor SL. Regulation of fibroblast-induced collagen gel contraction by interleukin-1 beta. J Oral Pathol Med 1998; 27:255–259.

    Article  PubMed  CAS  Google Scholar 

  99. Kaban LB, Dodson TB, Longaker MT, Stern M, Umeda H, Adzick S. Fetal cleft lip repair in rabbits: long-term clinical and cephalometric results. Cleft Palate Craniofac J 1993; 30:13–21.

    Article  PubMed  CAS  Google Scholar 

  100. Lepekhin E, Gron B, Berezin V, Bock E, Dabelsteen E. Differences in motility pattern between human buccal fibroblasts and periodontal and skin fibroblasts. Eur J Oral Sci 2002; 110:13–20.

    Article  PubMed  Google Scholar 

  101. Li J, Farthing PM, Ireland GW, Thornhill MH. IL-1 alpha and IL-6 production by oral and skin keratinocytes: similarities and differences in response to cytokine treatment in vitro. J Oral Pathol Med 1996; 25:157–162.

    Article  PubMed  CAS  Google Scholar 

  102. Longaker MT, Adzick NS. The biology of fetal wound healing: a review. Plast Reconstr Surg 1991; 87:788–798.

    PubMed  CAS  Google Scholar 

  103. Molsted K. Treatment outcome in cleft lip and palate: issues and perspectives. Crit Rev Oral Biol Med 1999; 10:225–239.

    Article  PubMed  CAS  Google Scholar 

  104. Nimni ME. Polypeptide growth factors: targeted delivery systems. Biomaterials 1997; 18:1201–1225.

    Article  PubMed  CAS  Google Scholar 

  105. Stephens P, Davies KJ, al-Khateeb T, Shepherd JP, Thomas DW. A comparison of the ability of intra-oral and extraoral fibroblasts to stimulate extracellular matrix reorganization in a model of wound contraction. J Dent Res 1996; 75:1358–1364.

    Article  PubMed  CAS  Google Scholar 

  106. Sullivan WG. In utero cleft lip repair in the mouse without an incision. Plast Reconstr Surg 1989; 84:723–730.

    Article  PubMed  CAS  Google Scholar 

  107. Weinzweig J, Panter KE, Spangenberger A, Harper JS, McRae R, Edstrom LE. The fetal cleft palate: III. Ultrastructural and functional analysis of palatal development following in utero repair of the congenital model. Plast Reconstr Surg 2002; 109:2355–2362.

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Von Den Hoff, J.W., Maltha, J.C., Kuijpers-Jagtman, A.M. (2006). Palatal Wound Healing:The Effects of Scarring on Growth. In: Berkowitz, S. (eds) Cleft Lip and Palate. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30020-1_20

Download citation

  • DOI: https://doi.org/10.1007/3-540-30020-1_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23409-8

  • Online ISBN: 978-3-540-30020-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics