Advertisement

Strategies for Dose Reduction and Improved Image Quality in MSCT

  • M. Kachelriess
  • W. A. Kalender
  • S. Schaller
Part of the Medical Radiology book series (MEDRAD)

Keywords

Image Quality Dose Reduction Image Noise Tube Voltage Patient Dose 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baum U, Lell M, Kachelriess M, Greess H, Kalender WA, Bautz WA (2000) Rawdata-based 3D adaptive filtering for CT scans of the cervicothoracic region: Clinical evaluation. Radiology 217:413Google Scholar
  2. BMU (2000) (Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit) Umweltradioaktivität und Strahlenbelastung im Jahr 2000. Unterrichtung durch die BundesregierungGoogle Scholar
  3. Brenner DJ, Elliston CD, Hall EJ, Berdon WE (2001) Estimated risks of radiation induced fatal cancer from pediatric CT. Am J Roentgenol 176:289–296Google Scholar
  4. Eklundh JO, Rosenfeld A (1981) Imaging smoothing based on neighbor linking. IEEE Trans Pattern Anal Mach Intell 3: 679–683CrossRefGoogle Scholar
  5. European Communities (1997) Council Directive 97/43/ Euratom of 30 June 1997 on health protection of individuals against the dangers of ionising radiation in relation to medical exposure, and repealing Directive 84/466/Euratom. Official Journal of the European Communities no. L 180/22Google Scholar
  6. Gies M, Kalender WA, Wolf H, Suess C, Madsen MT (1999) Dose reduction in CT by anatomically adapted tube current modulation. I. Simulation studies. Med Phys 26: 2235–2247PubMedCrossRefGoogle Scholar
  7. Greess H, Wolf H, Baum U, Lell M, Pirkl M, Kalender WA, Bautz WA (2000) Dose reduction in computed tomography by attenuation-based on-line modulation of tube current: evaluation of six anatomical regions. Eur Radiol 10:391–394PubMedCrossRefGoogle Scholar
  8. Harpen MD (1999) A simple theorem relating noise and patient dose in computed tomography. Med Phys 26:2231–2234PubMedGoogle Scholar
  9. Hsieh J (1994) Generalized adaptive median filter and their application in computed tomography. SPIE Proc 2298: 662–672Google Scholar
  10. Hsieh J (1998) Adaptive streak artifact reduction in computed tomography resulting from excessive X-ray photon noise. Med Phys 25:2139–2147PubMedCrossRefGoogle Scholar
  11. ICRP (1990) (International Commission on Radiological Protection) Publication 60. Recommendations of the International Commission on Radiological Protection. Pergamon, OxfordGoogle Scholar
  12. Jakobs T, Becker C, Ohnesorge B, Flohr T, Schoepf UJ, Reiser M (2002) Multislice helical CT of the heart with retrospective ECG-gating: reduction of radiation exposure by ECG-con-trolled tube current modulation. Eur Radiol 12:1081–1086PubMedCrossRefGoogle Scholar
  13. Kachelriess M, Kalender WA (1998) Electrocardiogram-correlated image reconstruction from subsecond spiral CT scans of the heart. Med Phys 25:2417–2431PubMedCrossRefGoogle Scholar
  14. Kachelriess M, Kalender WA (2000) Computertomograph mit reduzierter Dosisbelastung bzw. reduziertem Bildpunk-trauschen. Deutsches Patent-und Markenamt. Germany, Patent Specification DE 198 53 143Google Scholar
  15. Kachelriess M, Leidecker C, Kalender WA (2001a) Image quality-oriented automatic exposure control (iqAEC) for spiral CT. Radiology 221:366Google Scholar
  16. Kachelriess M, Watzke O, Kalender WA (2001b) Generalized multi-dimensional adaptive filtering for conventional and spiral single-slice, multi-slice, and cone-beam CT. Med Phys 28:475–490PubMedGoogle Scholar
  17. Kachelriess M, Leidecker C, Kalender WA (2002) Patient dose reduction by combining automatic exposure control (AEC) with multidimensional adaptive filtering (MAF) for spiral CT. Eur Radiol 12(Suppl 1):196Google Scholar
  18. Kalender WA (2001) Computed tomography. Wiley, New YorkGoogle Scholar
  19. Kalender WA, Schmidt B, Zankl M, Schmidt M (1999a) A PC program for estimating organ dose and effective dose values in computed tomography. Eur Radiol 9:555–562PubMedGoogle Scholar
  20. Kalender WA, Wolf H, Suess C (1999b) Dose reduction in CT by anatomically adapted tube current modulation. II. Phantom measurements. Med Phys 26:2248–2253PubMedCrossRefGoogle Scholar
  21. Kalender WA, Wolf H, Suess C, Gies M, Greess H, Bautz WA (1999c) Dose reduction in CT by on-line tube current control: principles and validation on phantoms and cadavers. Eur Radiol 9:323–328PubMedGoogle Scholar
  22. Keselbrener L, Shimoni Y, Akselrod S (1992) Nonlinear filters applied on computerized axial tomography. Theory and phantom images. Med Phys 19:1057–1064PubMedCrossRefGoogle Scholar
  23. Kopka L, Funke M, Breiter N, Hermann K-P, Vosshenrich R, Grabbe E (1995) Anatomisch adaptierte Variation des Röhrenstroms beider CT. Untersuchungen zur Strahlen-dosisreduktion und Bildqualität. Fortschr Röntgenstr 163: 383–387CrossRefGoogle Scholar
  24. Lauro KL, Heuscher DJ, Kesavan H (1990) Bandwidth filtering of CT scans of the spine. Radiology 177:307Google Scholar
  25. Leidecker C, Fuchs T, Kachelriess M, Schaller S, Kalender WA (2002) Comparison of different methods for adding virtual noise to measured rawdata in order to estimate the dose reduction potential for clinical protocols in CT. Radiology 225:592Google Scholar
  26. NCRP (1988) (National Counsel on Radiation Protection and Measurement) Exposure of the population in the United States and Canada from natural background radiation. Report 94Google Scholar
  27. Schaller S, Niethammer MU, Chen X, Klotz E, Wildberger TG, Flohr T (2001) Comparison of signal-to-noise and dose values at different tube voltages for protocol optimization in pediatric. Radiology 221:366Google Scholar
  28. Schmidt B, Kalender WA (2001) Calculation of dose reduction by tube current modulation in pediatric CT. Radiology 221:365Google Scholar
  29. Schmidt B, Kalender WA (2002) A fast voxel-based Monte Carlo method for scanner-and patient-specific dose calculations in computed tomography. Phys Med 18:43–53Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • M. Kachelriess
    • 1
  • W. A. Kalender
    • 1
  • S. Schaller
    • 2
  1. 1.Institute of Medical PhysicsErlangenGermany
  2. 2.Siemens Medical SolutionsForchheimGermany

Personalised recommendations