Skip to main content

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbey CK, Barrett HH (2001) Human and model observer performance in ramp-spectrum noise: effects of regularization and object variability’. J Opt Soc Am A, 18:473–488

    CAS  Google Scholar 

  • Ahn S, Fessler JA (2003) Globally convergent image reconstruction for emission tomography using relaxed ordered subsets algorithms. IEEE Trans Med Imaging 22:613–626

    Article  PubMed  Google Scholar 

  • Ardekani BA, Braun M, Hutton BF et al. (1996) Minimum cross-entropy reconstruction of PET images using prior anatomical information. Phys Med Biol 41:2497–2517

    Article  CAS  PubMed  Google Scholar 

  • Alenius S, Ruotsolainen U (1997) Bayesian image reconstruction for emission tomography based on median root prior. Eur J Nucl Med vol 24:pp 258–265

    CAS  PubMed  Google Scholar 

  • Axelsson B, Msaki P, Israelsson A (1984) Subtraction of Compton scattered photons in single-photon emission computed tomography. J Nucl Med 23:290–294

    Google Scholar 

  • Baete K, Nuyts J, Van Paesschen W et al (2004) Anatomical based FDG-PET reconstruction for the detection of hypometabolic regions in epilepsy. IEEE Trans Med Imaging 23:510–519

    Article  PubMed  Google Scholar 

  • Barrett HH, Wilson DW, Tsui BMW (1994) Noise properties of the EM algorithm: I. Theory. Phys Med Biol 39:833–846

    CAS  PubMed  Google Scholar 

  • Barrett HH, Yao J, Rolland JP et al. (1993) Model observers for assessment of image quality. Proc Natl Acad Sci USA 90:9758–9765

    CAS  PubMed  Google Scholar 

  • Beekman FJ, de Jong HWAM, van Geloven S (2002) Efficient fully 3-D iterative SPECT reconstruction with Monte Carlo-based scatter compensation. IEEE Trans Med Imaging 21:867–877

    Article  PubMed  Google Scholar 

  • Beekman FJ, Slijpen ETP, Niessen WJ (1998) Selection of task-dependent diffusion filters for the post-processing of SPECT images. Phys Med Biol 43:1713–1730

    Article  CAS  PubMed  Google Scholar 

  • Beyer T, Townsend DW, Brun T et al (2000) A combined PET/CT scanner for clinical oncology. J Nucl Med 41:1369–1379

    CAS  PubMed  Google Scholar 

  • Beyer T, Antoch G, Blodgett T et al (2003) Dual-modality PET/CT imaging: the effect of respiratory motion on combined image quality in clinical oncology. Eur J Nucl Med 30:588–596

    Google Scholar 

  • Bellini S, Piacentini M, Cafforio C, Rocca F (1979) Compensation of tissue absorption in emission tomography. IEEE Trans. Acoustics Speech and Signal Processing 27:213–218

    Article  Google Scholar 

  • Bloomfield PM, Spinks JS, Reed J, et al. (2003) The design and implementation of a motion correction scheme for neurological PET. Phys Med Biol 48:959–978

    Article  PubMed  Google Scholar 

  • Bowsher JE, Johnson VE, Turkington TG et al. (1996) Bayesian reconstruction and use of anatomical a Priori information for emission tomography. IEEE Trans Med Imaging 15:673–686

    Article  Google Scholar 

  • Britten AJ, Jamali F, Gane JN, and Joseph EA. (1998) Motion detection and correction using multi-rotation 180° single-photon emission tomography for thallium myocardial imaging. Eur. J. Nucl. Med. 25:1524–1530

    Article  CAS  PubMed  Google Scholar 

  • Buvat I, Benali H, Todd-Pokropek A et al. (1995) Scatter correction in scintigraphy: the state of the art. Eur J Nucl Med 21:675–694

    Google Scholar 

  • Case JA, Pan TS, King MA, Luo DS, Penney BC, Rabin MSZ (1995) Reduction of truncation artifacts in fan beam transmission imaging using a spatially varying gamma prior. IEEE Trans Nucl Sci 42:2260–2265

    Article  Google Scholar 

  • Chan MT, Leahy RM, Mumcuoglu EU et al. (1997) Comparing lesion detection performance in PET image reconstruction algorithms: a case study. IEEE Trans Nucl Sci 44:1558–1563

    Google Scholar 

  • Chatziioannou A, Dahlbom M (1996) Detailed investigation of transmission and emission data smoothing protocols and their effects on emission images. IEEE Trans Nucl Sci 43:290–294

    Article  CAS  Google Scholar 

  • Chatziioannou A, Qi J, Moore A, et al (2000) Comparison of 3-D maximum a posteriori and filtered backprojection algorithms for high-resolution animal imaging with microPET. IEEE Trans Med Imaging 19:507–512

    Article  CAS  PubMed  Google Scholar 

  • Chin BB, Nakamoto Y, Kraitchman DL (2003) PET-CT evaluation of 2-deoxy-2-[18F]fluoro-D-glucose myocardial uptake: effect of respiratory motion. Mol Imaging Biol 5:57–64

    PubMed  Google Scholar 

  • Coakley K, Llacer J (1991) The use of cross-validation as a stopping rule in emission tomography image reconstruction. SPIE Medical Imaging V:226–233

    Google Scholar 

  • Comtat C, Kinahan PE, Fessler JA, et al (2002) Clinically feasible reconstruction of 3D whole-body PET/CT data using blurred anatomical labels. Phys Med Biol 47:1–20

    Article  PubMed  Google Scholar 

  • Daube-Witherspoon ME, Matej S, Karp JS, Lewitt RM (2001) Application of the row action maximum likelihood algorithm with spherical basis functions to clinical PET imaging. IEEE Trans Nucl Sci 48:24–30

    Article  Google Scholar 

  • Defrise M, Geissbuler A, Townsend DW (1994) A performance study of 3D reconstruction algorithms for positron emission tomography. Phys Med Biol 39:305–320

    Article  CAS  PubMed  Google Scholar 

  • Defrise M, Kinahan PE, Townsend DW, et. al (1997) Exact and approximate rebinning algorithms for 3D PET data. IEEE Trans Med Imag 16:145–158

    CAS  Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Series B39:1–38

    Google Scholar 

  • De Vries DJ, King MA, Soares EJ et al. (1997) Evaluation of the effect of scatter correction on lesion detection in hepatic SPECT imaging. IEEE Trans Nucl Sci 44:1733–1740

    Google Scholar 

  • Eisen Y, Mardor I, Shor A (2003) NUCAM3-a gamma camera based on segmented monolithic CdZnTe detectors. IEEE Trans Nucl Sci 49:1728–1732

    Google Scholar 

  • Falcon C, Juvells I, Pavia J, Ros D (1998) Evaluation of a cross-validation stopping rule in MLE SPECT reconstruction. Phys Med Biol 43:1271–1283

    CAS  PubMed  Google Scholar 

  • Fessler DU, Ficaro EP, Clinthorne NH, et al. (1997) Grouped-coordinate ascent algorithms for penalized-likelihood transmission image reconstruction. IEEE Trans Med Imaging 16:166–175

    Article  CAS  PubMed  Google Scholar 

  • Fessler JA, and Rogers WL (1996) Spatial resolution properties of penalized-likelihood image reconstruction: space-invariant tomographs. IEEE Trans Im Proc 5:1346–1358

    Google Scholar 

  • Fessler JA (2003) Analytical approach to regularization design for isotropic spatial resolution. Proc IEEE Nucl Sci Symp Med Im Conf 2003. To appear. 1343, M5–5

    Google Scholar 

  • Fulton RR, Eberl S, Meikle SR, Hutton BF, Braun M (1999) A practical 3D tomographic method for correcting patient head motion in clinical SPECT. IEEE Trans Nucl Sci 46:667–672

    Article  Google Scholar 

  • Gagnon D, Todd-Pokropek A, Arsenault A et al. (1989) Introduction to holospectral imaging in nuclear medicine for scatter subtraction. IEEE Trans Med Imaging 8:245–250

    Article  Google Scholar 

  • Gifford HC, King MA, de Vries DJ (2000) Channelized Hotelling and human observer correlation for lesion detection in hepatic SPECT imaging. J Nucl Med 41:514–521

    CAS  PubMed  Google Scholar 

  • Gilland DR, Tsui BM, Metz CE et al. (1992) An evaluation of maximum-likelihood expectation maximization reconstruction for SPECT by ROC analysis. J Nucl Med 33:451–457

    CAS  PubMed  Google Scholar 

  • Glatting G, Werner C, Reske SV, Bellemann ME (2003) ROC analysis for assessment of lesion detection performance in 3D PET: influence of reconstruction algorithms. Med Phys 30:2315–2319

    Article  PubMed  Google Scholar 

  • Glick SJ, Penney BC, King MA et al. (1994) Noniterative compensation for the distant-dependent detector response and photon attenuation in SPECT imaging. IEEE Trans Med Imaging 13:363–374

    Article  Google Scholar 

  • Goerres GW, Kamel E, Heidelberg TNH et al (2002) PET-CT image co-registration in the thorax: influence of respiration. Eur J Nucl Med 29:351–360

    CAS  Google Scholar 

  • Hendel RC, Berman DS, Cullom SJ et al (1999) Multicenter clinical trial to evaluate the efficacy of correction for photon attenuation and scatter in SPECT myocardial perfusion imaging. Circulation 99:2742–2749

    CAS  PubMed  Google Scholar 

  • Hendel RC, Corbett JR, Cullom SJ et al (2002) The value and practice of attenuation correction for myocardial perfusion SPECT imaging: a joint position statement from the American Society of Nuclear Cardiology and the Society of Nuclear Medicine. J Nucl Cardiol 9:135–143

    PubMed  Google Scholar 

  • Herman GT (1980) Image reconstruction from projections, the fundamentals of computerized tomography. New York, NY, Academic Press

    Google Scholar 

  • Hsiao IT, Rangarajan A, Gindi G (2003) A new convex edge-preserving median prior with applications to tomography. IEEE Trans Med Imaging 22:580–585

    PubMed  Google Scholar 

  • Huang SC, Phelps ME (1986) In: Phelps ME, Mazziotta JC, Schelbert HR (eds) Positron emission tomography and autoradiography. Raven Press, New York, pp 287–346

    Google Scholar 

  • Hudson HM, Larkin RS (1994) Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 13:601–609

    Article  Google Scholar 

  • Huesman RH (1984) A new fast algorithm for the evaluation of regions of interest and statistical uncertainty in computed tomography. Phys Med Biol 29:543–552

    Article  CAS  PubMed  Google Scholar 

  • Hutton BF, Lau YH (1998) Application of distance-dependent resolution compensation and post-reconstruction filtering for myocardial SPECT. Phys Med Biol 43:1679–1693

    Article  CAS  PubMed  Google Scholar 

  • Hutton BF, Osiecki A, Meikle SR (1996) Transmission-based scatter correction of 180 degrees myocardial single-photon emission tomographic studies. Eur J Nucl Med 23:1300–1308

    Article  CAS  PubMed  Google Scholar 

  • Iida H, Narita Y, Kado H et al (1998) Effects of scatter and attenuation correction on quantitative assessment of regional cerebral blood flow with SPECT. J Nucl Med 39:181–189

    CAS  PubMed  Google Scholar 

  • Jang S, Jaszczak RJ, Tsui BMW et al (1998) ROC evaluation of SPECT myocardial lesion detectability with and without single iteration non-uniform Chang attenuation compensation using an anthropomorphic female phantom. IEEE Trans Nucl Sci 45:2080–2088

    Google Scholar 

  • Jaszczak RJ, Greer KL, Floyd CE et al (1984) Improved SPECT quantification using compensation for scattered photons. J Nucl Med:25:893–900

    CAS  PubMed  Google Scholar 

  • Kamel E, Hany TF, Burger C et al (2002) CT vs 68Ge attenuation correction in a combined PET/CT system: evaluation of the effect of lowering the CT tube current. Eur J Nucl Med 29:346–350

    CAS  Google Scholar 

  • Karp JS, Becker AJ, Matej S et al (1998) Data processing and image reconstruction methods for the HEAD PENN-PET scanner. Phys Med Biol 45:1144–1151

    CAS  Google Scholar 

  • Kaufman L (1987) Implementing and accelerating the EM algorithm for positron emission tomography. IEEE Trans Med Imaging MI-6:37–51

    Google Scholar 

  • Kinahan PE, Rogers JG (1989) Analytic three-dimensional image reconstruction using all detected events. IEEE Trans Nucl Sci NS-36:964–968

    Google Scholar 

  • Kinahan PE, Townsend DW, Beyer T et al (1998) Attenuation correction for a combined 3D PET/CT scanner. Med Phys 10:2046–2053

    Google Scholar 

  • King MA, de Vries DJ, Pan TS et al (1997) An investigation of the filtering of TEW scatter estimates used to compensate for scatter with ordered subset reconstructions. IEEE Trans Nucl Sci 44:1140–1145

    Google Scholar 

  • King MA, Schwinger RB, Penney BC et al (1986) Digital restoration of indium-111 and iodine-123 SPECT images with optimized Metz filters. J Nucl Med 27:1327–1336

    CAS  PubMed  Google Scholar 

  • King MA, Tsui BMW, Pan TS et al (1996) Attenuation compensation for cardiac single-photon emission computed tomographic imaging: 2. Attenuation compensation algorithms. J Nucl Cardiology 3:55–64

    CAS  Google Scholar 

  • Kohli V, King MA, Glick SJ et al (1998) Comparison of frequency-distance relationship and Gaussian-diffusion-based methods of compensation for distance-dependent spatial resolution in SPECT imaging. Phys Med Biol 43:1025–1037

    Article  CAS  PubMed  Google Scholar 

  • Kotzerke J, Gulmann A, Moog F et al (1999) Role of attenuation correction for fluorine-18 fluorodeoxyglucose positron emission tomography in the primary staging of malignant lymphoma. Eur J Nucl Med 16:31–38

    Google Scholar 

  • Kyme AZ, Hutton BF, Hatton RL, et al (2003) Practical aspects of a data-driven motion correction approach for brain SPECT. IEEE Trans Med Imag 22:722–729

    Google Scholar 

  • LaCroix KJ, Tsui BMW, Frey EC, Jaszczak RJ (2000) Receiver operating characteristic evaluation of iterative reconstruction with attenuation correction in 99mTc-sestamibi myocardial SPECT images. J Nucl Med 41:502–513

    CAS  PubMed  Google Scholar 

  • Lalush DS, Tsui BM (1993) A generalized Gibbs prior for maximum a posteriori reconstruction in SPECT. Phys Med Biol 38:729–741

    Article  CAS  PubMed  Google Scholar 

  • Lange K, Carson R (1984) EM reconstruction algorithms for emission and transmission tomography. J Comp Assist Tomogr 8:306–316

    CAS  Google Scholar 

  • Lartizien C, Kinahan PE, Swensson R et al (2003) Evaluating image reconstruction methods for tumor detection in 3-dimensional whole-body PET oncology imaging. J Nucl Med 44:276–290

    PubMed  Google Scholar 

  • Leahy R, Qi J. (2000) Statistical approaches in quantitative positron emission tomography. Stat Comput 10:147–165

    Article  Google Scholar 

  • Lee KJ,and Barber DC (1998) Use of forward projection to correct for patient motion during SPECT imaging. Phys. Med. Biol. 43:171–187

    Article  CAS  PubMed  Google Scholar 

  • Lewitt RM (1992) Alternatives to voxels for image representation in iterative reconstruction algorithms. Phys Med Biol 37:705–716

    Article  CAS  PubMed  Google Scholar 

  • Lewitt RM, Matej S (2003) Overview of methods for image reconstruction from projections in emission computed tomography. Proceedings of the IEEE, 10:1588–1611

    Google Scholar 

  • Liow JS; Strother SC (1993) The convergence of object dependent resolution in maximum likelihood based tomographic image reconstruction. Phys Med Biol 38:55–70

    Article  CAS  PubMed  Google Scholar 

  • Lipinski B, Herzog H, Rota Kops E et al (1997) Expectation maximization reconstruction of positron emission tomography images using anatomical magnetic resonance information. IEEE Trans Med Imaging 16:129–136

    Article  CAS  PubMed  Google Scholar 

  • Llacer J, Veklerov E (1989) Feasible images and practical stopping rules for iterative algorithms in emission tomography. IEEE Trans Med Imaging 8:186–193

    Article  Google Scholar 

  • Lonneux M, Borbath I, Bol A et al (1999) Attenuation correction in whole-body FDG oncological studies: the role of statistical reconstruction. Eur J Nucl Med 16:591–598

    Google Scholar 

  • Lopresti BJ, Russo A, Jones WF et al (1999) Implementation and performance of an optical motion tracking system for high resolution brain PET imaging. IEEE Trans Nucl Sci 46:2059–2067

    Article  Google Scholar 

  • Manglos SH, Gagne GM, Bassano DA (1993) Quantitative analysis of image truncation in focal-beam CT. Phys Med Biol 38:1443–1457

    Google Scholar 

  • Manglos SH, Gagne GM, Krol A, et al (1995) Transmission maximum-likelihood reconstruction with ordered subsets for cone beam CT. Phys Med Biol 40:1225–1241

    Article  CAS  PubMed  Google Scholar 

  • Matej S, Lewitt RM (1996) Practical considerations for 3-D image reconstruction using spherically symmetric volume elements. IEEE Trans Med Imaging 15:68–78

    Article  Google Scholar 

  • Matsunari I, Boning G, Ziegler SI et al (1998) Effects of misalignment between transmission and emission scans on attenuation-corrected cardiac SPECT. J Nucl Med 39:411–416

    CAS  PubMed  Google Scholar 

  • Matsumoto N, Berman DS, Kavanagh PB, et al (2001) Quantitative assessment of motion artifacts and validation of a new motion-correction program for myocardial perfusion SPECT. J Nucl Med 42:687–694

    CAS  PubMed  Google Scholar 

  • McCarthy AW, Miller MI (1991) Maximum likelihood SPECT in clinical computation times using mesh-connected parallel computers. IEEE Trans Med Imaging 10:426–436

    Article  Google Scholar 

  • McCord ME, Bacharach SL, Bonow RO et al. (1992) Misalignment between PET transmission and emission scans: its effect on myocardial imaging. J Nucl Med 33:1209–1214

    CAS  PubMed  Google Scholar 

  • Meikle SR, Dahlbom M, Cherry SR (1993) Attenuation correction using count-limited transmission data in positron emission tomography. J Nucl Med 34:143–144

    CAS  PubMed  Google Scholar 

  • Meikle SR, Matthews JC, Cunningham VJ et al. (1998) Parametric image reconstruction using spectral analysis of PET projection data. Phys Med Biol 43:651–666

    Article  CAS  PubMed  Google Scholar 

  • Michel C, Bol A, De Volder AG, Goffinet AM (1989) Online brain attenuation correction in PET: towards a fully automated data handling in a clinical environment. Eur J Nucl Med 15:712–718

    Article  CAS  PubMed  Google Scholar 

  • Müller-Gärtner HW, Links JM, Prince JL, et al (1992) Measurement of radiotracer concentration in brain gray matter using positron emission tomography: MRI-based correction for partial volume effects. J Cereb Blood Flow Metab 12:571–583

    PubMed  Google Scholar 

  • Mumcuoglu EU, Leahy RM, Cherry SR (1996) Bayesian reconstruction of PET images: methodology and performance analysis. Phys Med Biol 41:1777–1807

    Article  CAS  PubMed  Google Scholar 

  • Narita Y, Iida H, Eberl S et al (1997) Monte Carlo evaluation of accuracy and noise properties of two scatter correction methods for Tl-201 cardiac SPECT. IEEE Trans Nucl Sci 44:2465–2472

    Article  CAS  Google Scholar 

  • Nuyts J, De Man B, Dupont P et al (1998) Iterative reconstruction for helical CT: a simulation study. Phys Med Biol 4:729–737

    Google Scholar 

  • Nuyts J, Dupont P, Van den Maegdenbergh V et al (1995) A study of the liver-heart artifact in emission tomography. J Nucl Med 36:133–139

    CAS  PubMed  Google Scholar 

  • Nuyts J, Bequé D, Dupont P, Mortelmans L (2002) A concave prior penalizing relative differences for maximum-a-posteriori reconstruction in emission tomography. IEEE Trans Nucl Sci 49:56–60

    Google Scholar 

  • Nuyts J, Baete K, Dupont P (2003) Comparison between MAP and post-processed ML for incorporating anatomical knowledge in emission tomography. Proc IEEE Nuc Sci Symp Med Im Conf. To appear. 1271, M5–2

    Google Scholar 

  • Nuyts J, Fessler JA (2003) A penalized-likelihood image reconstruction method for emission tomography, compared to post-smoothed maximum-likelihood with matched spatial resolution. IEEE Trans Med Imaging 22:1042–1052

    Article  PubMed  Google Scholar 

  • Obi T, Matej S, Lewitt RM, Herman GT (2000) 2.5-D simultaneous multislice reconstruction by series expansion methods from Fourier-rebinned PET data. IEEE Trans Med Imaging 19:474–484

    Article  CAS  PubMed  Google Scholar 

  • Ogawa K, Harata Y, Ichihara T et al (1991) A practical method for position-dependent Compton scatter correction in single photon emission CT. IEEE Trans Med Imaging 10:408–412

    Article  Google Scholar 

  • Ollinger JM (1996) Model-based scatter correction for fully 3D PET. Phys Med Biol 41:153–176

    Article  CAS  PubMed  Google Scholar 

  • Pluim JPW, Maintz JBA, Viergever MA (2003) Mutual-information-based registration of medical images: a survey. IEEE Trans Med Imaging 8:986–1004

    Google Scholar 

  • Qi J, and Leahy R (1999) A theoretical study of the contrast recovery and variance of MAP reconstructions form PET Data. IEEE Trans Med Imag 18:293–305

    CAS  Google Scholar 

  • Qi J (2004) Analysis of lesion detectability in Bayesian emission reconstruction with nonstationary object variability. IEEE Trans Med Imaging, to appear

    Google Scholar 

  • Rangarajan A, Hsiao IT, Gindi G (2000) A Bayesian joint mixture framework for the integration of anatomical information in functional image reconstruction. J Math Imag Vision 12:119–217

    Google Scholar 

  • Raylman RR, Hutchins GD, Beanlands RSB et al. (1994) Modeling of carbon-11-acetate kinetics by simultaneously fitting data from multiple ROIs coupled by common parameters. J Nucl Med 35:1286–1291

    CAS  PubMed  Google Scholar 

  • Rockmore AJ, Macovski A (1976) A maximum likelihood approach to emission image reconstruction from projections. IEEE Trans Nucl Sci NS-23:1428–1432

    Google Scholar 

  • Sarikaya I. Yeung HWD, Erdi Y et al (2003) Respiratory artefact causing malpositioning of liver dome lesion in right lower lung. Clin Nucl Med 28:942–944

    Google Scholar 

  • Sastry S, Carson RE (1997) Multimodality Bayesian algorithm for image reconstruction in positron emission tomography: a tissue composition model. IEEE Trans Med Imaging 16:750–761

    Article  CAS  PubMed  Google Scholar 

  • Schiepers C, Nuyts J, Wu C et al. (1997) PET with F-18 fluoride: effects of iterative versus filtered backprojection reconstruction on kinetic modeling. IEEE Trans Nucl Sci 44:1591–1593

    Article  CAS  Google Scholar 

  • Schmidlin P (1972) Iterative separation of sections in tomographic scintigrams. Nuklearmedizin 11:1–16

    CAS  Google Scholar 

  • Shepp LA, Vardi Y (1982) Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imaging MI-1:113–122

    Google Scholar 

  • Slijpen ETP, FJ Beekman FJ (1999) Comparison of post-filtering and filtering between iterations for SPECT reconstruction. IEEE Trans Nucl Sci 46:2233–2238

    Article  Google Scholar 

  • Snyder DL, Miller MI (1985) The use of sieves to stabilize images produced with the EM algorithm for emission tomography. IEEE Trans Nucl Sci NS-32:3864–3872

    Google Scholar 

  • Snyder DL, Miller MI, Thomas LJ et al (1987) Noise and edge artifacts in maximum likelihood reconstructions for emission tomography. IEEE Trans Med Imaging MI-6:228–238

    Google Scholar 

  • Stayman JW, Fessler JA (2003) Compensation for nonuniform resolution using penalized-likelihood reconstruction in space-variant imaging systems. IEEE Trans Med Imaging, in press

    Google Scholar 

  • Stonestrom JP, Alvarez RE, Macovski A (1981) A framework for spectral artifact corrections in X-ray CT. IEEE Trans Biomedical Engineering BME-28:128–141

    Google Scholar 

  • Surti S, Karp JS, Muehllehner G et al (2003) Investigation of lanthanum scintillators for 3-D PET. IEEE Trans Nucl Sci 50:348–354

    CAS  Google Scholar 

  • YC Tai, KP Lin, M Dahlbom, EJ Hoffman (1996) A hybrid attenuation correction technique to compensate for lung density in 3D total body PET. IEEE Trans Nucl Sci 43:323–330

    Article  Google Scholar 

  • Tanaka E (1987) A fast reconstruction algorithm for stationary positron emission tomography based on a modified EM algorithm. IEEE Trans Med Imaging MI-6:98–105

    Google Scholar 

  • Veklerov E, Llacer J (1987) Stopping rule for the MLE algorithm based on statistical hypothesis testing. IEEE Trans Med Imaging; MI-6:313–319

    Google Scholar 

  • Visvikis D, Costa DC, Croasdale I (2003) CT-based attenuation correction in the calculation of semi-quantitative indices of [[sup 18] F]FDG uptake in PET. Eur J Nucl Med Mol Imaging 30:344–353

    CAS  PubMed  Google Scholar 

  • Vogel WV, Oyen WJG, Barentsz OJ et al (2004) PET/CT: panacea, redundancy, or something in between? J Nucl Med 45:15S–24S

    PubMed  Google Scholar 

  • Walrand SHM, van Elmbt LR, Pauwels S (1994) Quantitation in SPECT using an effective model of the scattering. Phys Med Biol 39:719–734

    Article  CAS  PubMed  Google Scholar 

  • Wang W, and Gindi G (1997) Noise analysis of MAP-EM algorithms for emission tomography. Phys Med Biol 42:2215–2232

    CAS  PubMed  Google Scholar 

  • Watson CC, Newport D, Casey ME et al (1997) Design and performance of collimated coincidence point sources for simultaneous transmission measurements in 3-D PET. IEEE Trans Nucl Sci 44:90–97

    Google Scholar 

  • Welch A, Gullberg GT (1997) Implementation of model-based nonuniform scatter correction scheme for SPECT. IEEE Trans Med Imaging 16:717–726

    CAS  PubMed  Google Scholar 

  • Wells RG, Celler A, Harrop R (1997) Experimental validation of an analytical method of calculating SPECT projection data. IEEE Trans Nucl Sci 44:1283–1290

    Article  CAS  Google Scholar 

  • Wilson DW, Tsui BMW, Barrett HH (1994) Noise properties of the EM algorithm: II. Monte Carlo simulations. Phys Med Biol 39:833–846

    Article  PubMed  Google Scholar 

  • Wu HM, Huang SC, Allada et al. (1996) Derivation of input function from FDG-PET studies in small hearts. J Nucl Med 37:1717–1722

    CAS  PubMed  Google Scholar 

  • Xia W, Lewitt RM, Edholm PR (1995) Fourier correction for spatially variant collimator blurring in SPECT. IEEE Trans Med Imaging 14:100–115

    Google Scholar 

  • Xu M, Cutler PD, Luk WK (1996) Adaptive, segmented attenuation correction for whole-body PET imaging. IEEE Trans Nucl Sci 43:331–336

    Article  Google Scholar 

  • Yang JT, Yamamoto K, Sadato N et al (1997) Clinical value of triple-energy window scatter correction in simultaneous dual-isotope single-photon emission tomography with I-123-BMIPP and Tl-201. Eur J Nucl Med 24:1099–1106

    CAS  PubMed  Google Scholar 

  • Zhou Y, Cloughesy T, Hoh CK et al (1997) A modeling-based factor extraction method for determining spatial heterogeneity of Ga-68 EDTA kinetics in brain tumors. IEEE Trans Nucl Sci 44:2522–2527

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nuyts, J., Bequé, D. (2006). Image Formation. In: Baert, A.L., Sartor, K., Schiepers, C. (eds) Diagnostic Nuclear Medicine. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30005-8_17

Download citation

  • DOI: https://doi.org/10.1007/3-540-30005-8_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42309-6

  • Online ISBN: 978-3-540-30005-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics