Skip to main content

Part of the book series: VDI-Buch ((VDI-BUCH))

  • 11k Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Holm R (1967) Electrical Contacts. Springer Verlag, Berlin, Heidelberg, New York

    Google Scholar 

  2. Vinaricky E (Hrsg) (2002) Elektrische Kontakte, Werkstoffe und Anwendungen. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  3. Schimkat J (1996) Grundlagen und Modelle zur Entwicklung und Optimierung von Silizium-Mikrorelais. Dissertation TU Berlin, D 83

    Google Scholar 

  4. Hosaka H, Kuwano H, Yanagisawa K (1993) Electromagnetic Microrelays: Concepts and Fundamental Characteristics. Proc. Int. Workshop on Micro Electro Mechanical Systems, Fort Lauderdale/Florida, IEEE

    Google Scholar 

  5. Hyman D; Mehregany M (1999) Contact Physics of Gold Microcontacts for MEMS Switches. IEEE Trans. Comp. Pack. Tech. 22,3, 357–364

    Google Scholar 

  6. Paschen F (1889) Über die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure bei verschiedenen Drucken erforderliche Potentialdifferenz. Annalen der Physik 37, 69–96

    Google Scholar 

  7. Dhariwal RS, Milne NG, Yang SJ, Beerschwinger U, Rump GFA, King PC (1994) Breakdown Electric Field Strength between Small Electrode Spacings in Air. Micro System Technologies, VDE-Verlag, Berlin, 663–672

    Google Scholar 

  8. Torres JM, Dhariwal RS (1998) Electric Field Breakdown at Micrometer Separations in Air and Vacuum. Micro System Technologies’ 98, Potsdam, VDE-Verlag, Berlin, Offenbach, 295–300

    Google Scholar 

  9. Rogge B, Schulz J, Mohr J, Thommes A, Menz W (1995) Fully Batch Fabricated Magnetic Microacturs Using Two Layer LIGA Process. Transducers 1995, Stockholm, June, 320–323

    Google Scholar 

  10. Taylor W, Allen M (1997) Batch fabricated electromagnetic microrelays. 45th Relay Conference, Lake Buena Vista, Florida, Proc. NARM

    Google Scholar 

  11. Fullin E, Gobet J, Tilmans HAC, Bergqvist J (1998) A new basic technology for magnetic micro-actuators. Int. Workshop Micro Electro Mechanical Systems, MEMS, Heidelberg, Proc. IEEE

    Google Scholar 

  12. Tilmans HAC et al. (1999) A Fully-Packaged Electromagnetic Microrelay. 12th International Conference on Micro Electro Mechanical Systems, MEMS, Proc. IEEE

    Google Scholar 

  13. Schimkat J, Kiesewetter L, Gevatter H-J, Arndt F, Steckenborn A, Schlaak HF (1994) Moving Wedge Actuator: An Electrostatic Actuator for Use in a Microrelay, Proc. Micro System Technologies’ 94, Berlin, VDE-Verlag, 989–996

    Google Scholar 

  14. Schlaak HF, Arndt F, Hanke M (1996) Silicon-microrelay with electrostatic moving wedge actuator — new functions and miniturisation by micromechanics, Proc. Micro System Technologies’ 96, Potsdam, VDE-Verlag, 463–468

    Google Scholar 

  15. Schlaak HF, Arndt F, Hanke M (1997) Silicon-microrelay — a small signal relay with electrostatic actuator, 45th Relay Conference, Lake Buena Vista, Florida, Proc. NARM

    Google Scholar 

  16. Schiele I, Huber J, Evers C, Hillerich B, Kozlowski F (1997) Micromechanical Relay with Electrostatic Actuation. Transducers’ 97, Chicago, June 16–19, 1165–1168

    Google Scholar 

  17. Schirmer ML, Zavracky PM, McGruer NE, Majunder S, Morrison RH, Potter DC, Adams GG, Krim J (1998) Design, characterization and application of surface micromachined, electrostatically actuated Microswitches. 46th Relay Conference, Oak Brook Hills, Illinois, Proc. NARM

    Google Scholar 

  18. Sano K et al. (1999) Study on Characteristics of Micro Machined Relay With Atmosphere Control. 47th Relay Conference, Newport Beach, California, Proc. NARM

    Google Scholar 

  19. Komura Y et al. (1999) Micro Machined Relay for High Frequency Application. 47th Relay Conference, Newport Beach, California, Proc. NARM

    Google Scholar 

  20. Pietsch K, Kiesewetter L (1998) Miniature Piezoelectric Relay with Low Operate Voltage and Short Switching Time Using a Monolithic Multilayer Bender Actuator. 6th International Conference on New Actuators, Actuator’ 98, Bremen, P 23

    Google Scholar 

  21. Riethmüller W, Benecke W (1988) Thermally excited silicon microactuators. IEEE Trans. Electron. Devices 35,6, 758–763

    Google Scholar 

  22. Seki T, Sakata M, Nakajima T, Matsumoto M (1997) Thermal buckling actutor for micro relays. Transducers 97, Int. Conf. on Solid-State Sensors and Actuators, Chicago, IEEE

    Google Scholar 

  23. Tomonari S et al. (2000) The Microrelay Thermally Actuated by the Silicon Bimetal. 48th Relay Conference, Proc. NARM

    Google Scholar 

  24. Liu Y, Li X, Abe T, Haga Y, Esashi M (2001) A Thermomechanicalal Relay with Microspring Contact Array. 14th Int. Conf. on MEMS, Interlaken, 2001, Proc. IEEE, 220–223

    Google Scholar 

  25. Heuberger A (1993) Mikromechanik. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  26. Madou M (1997) Fundamentals of Microfabrication. CRC Press, New York

    Google Scholar 

  27. Menz W, Mohr J (1997) Mikrosystemtechnik für Ingenieure. 2. Aufl. VCH Verlagsgesellschaft, Weinheim

    Google Scholar 

  28. Tilmans HAC, van de Peer MDJ, Beyne E (2000) The Indent Reflow Sealing (IRS) Technique — A Method for the Fabrication of Sealed Cavities for MEMS Devices. IEEE J. Microelectromechanical Systems, 9,2, 206–217

    Google Scholar 

  29. Ruan M, Shen J, Wheeler CB (2001) Latching Micromagnetic Relays. IEEE J. Micromechanical Systems, 10,4, 511–517

    Google Scholar 

  30. Schlaak HF, Arndt F, Hanke M (1998) Switching characteristic of silicon-microrelay with electrostatic actuator. Int. Conf. on Electrical Contacts, Sep., Nürnberg, VDE-Verlag

    Google Scholar 

  31. Plötz F, Michaelis S, Fattinger G, Aigner R, Noe R (2001) Performance and Dynamics of a RF MEMS Switch. Transducers’ 01, 11th Int. Conf. Solid-State Sensors and Actuators, Munich, Springer

    Google Scholar 

  32. Park J-H et al. (2001) A 3-Voltage Actuated Micromachined RF Switch for Telecommunications Applications. Transducers’ 01, Munich, Springer

    Google Scholar 

  33. Yao ZJ et al. (1999) Micromachined Low-Loss Microwave Switches. IEEE J. Microelectromechanical Systems, 8,2, 129–134

    Google Scholar 

  34. Ulm M, Reimann M, Walter Th, Müller-Fiedler R, Kasper E (2001) Scalability of Capacitive RF MEMS Switches. Transducers’ 01, Munich, Springer

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schlaak, H. (2006). Mikromechanische Relais. In: Gevatter, HJ., Grünhaupt, U. (eds) Handbuch der Mess- und Automatisierungstechnik im Automobil. VDI-Buch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29980-7_24

Download citation

Publish with us

Policies and ethics