Orientierung in Zeit und Raum

Part of the Springer-Lehrbuch book series (SLB)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Able K (1996) The debate over olfactory navigation by homing pigeons. J Exp Biol 199:121–124Google Scholar
  2. Able K, Able M (1996) The flexible migration orientation system of the savannah sparrow (Passerculus sandwichensis). J Exp Biol 199:3–8PubMedGoogle Scholar
  3. Acosta-Avalos D, Esquivel DMS, Wajnberg E, Lins de Barros HGP, Oliveira PS, Leal I (2001) Seasonal patterns in the orientation system of the migratory ant Pachycondyla marginata. Naturwissenschaften 88:343–346PubMedCrossRefGoogle Scholar
  4. Akesson S, Wehner R (2002) Visual navigation in desert ants Cataglyphis fortis: are snapshots coupled to a celestial system of reference? J Exp Biol 205:1971–1978PubMedGoogle Scholar
  5. Albrecht U (2002) Invited review: regulation of mammalian circadian clock genes. J Appl Physiol 92:1348–1355PubMedGoogle Scholar
  6. Alerstam T, Gudmundsson GA, Green M, Hedenström A (2001) Migration along orthodromic sun compass routes by Arctic birds. Science 291:300–303PubMedCrossRefGoogle Scholar
  7. Alerstam T, Hedenström A, Å kesson S (2003) Long-distance migration: evolution and determinants. Oikos 103:247–260CrossRefGoogle Scholar
  8. André M, Kamminga C (2000) Rhythmic dimension in the echolocation click trains of sperm whales: a possible function of identification and communication. J Mar Biol Ass UK 80:163–169Google Scholar
  9. Aschoff J (1960) Exogenous and endogenous components in circadian rhythms. Cold Spring Harbor Symp Quant Biol 25:11–28PubMedGoogle Scholar
  10. Au WW, Benoit-Bird KJ (2003) Automatic gain control in the echolocation system of dolphins. Nature 423:861–863PubMedCrossRefGoogle Scholar
  11. Bairlein F (2002) How to get fat: nutritional mechanisms of seasonal fat accumulation in migratory songbirds. Naturwissenschaften 89:1–10PubMedCrossRefGoogle Scholar
  12. Bardunias PM, Jander R (2000) Three dimensional path integration in the house mouse (Mus domestica). Naturwissenschaften 87:532–534PubMedCrossRefGoogle Scholar
  13. Beck W, Wiltschko W(1988) Magnetic factors control the migratory direction of pied flycatchers (Ficedula hypoleuca Pallas). In: Ouellet H (ed) Acta XIX Congressus Internationalis Ornitholgici. Univ of Ottawa Press, Ottawa, pp 1955–1962Google Scholar
  14. Bennett AT (1996) Do animals have cognitive maps? J Exp Biol 199:219–224PubMedGoogle Scholar
  15. Berthold P (2000) Vogelzug. Eine aktuelle Gesamtübersicht. Wissenschaftliche Buchgesellschaft, DarmstadtGoogle Scholar
  16. Berthold P, Helbig AJ, Mohr G, Querner U (1992) Rapid microevolution of migratory behaviour in a wild bird species. Nature 360:668–670CrossRefGoogle Scholar
  17. Bertolucci C, Leorati M, Innocenti A, Foá A (1999) Circannual variations of lizard circadian activity rhythms in constant darkness. Behav Ecol Sociobiol 46:200–209CrossRefGoogle Scholar
  18. Bisch-Knaden S, Wehner R (2003) Landmark memories are more robust when acquired at the nest site than en route: experiments in desert ants. Naturwissenschaften 90:127–130PubMedGoogle Scholar
  19. Boles LC, Lohmann KJ (2003) True navigation and magnetic maps in spiny lobsters. Nature 421:60–63PubMedCrossRefGoogle Scholar
  20. Burt T, Holland R, Guilford T (1997) Further evidence for visual landmark involvement in the pigeon’s familiar area map. Anim Behav 53:1203–1209PubMedCrossRefGoogle Scholar
  21. Burt de Perrera T (2004) Fish can encode order in their spatial map. Proc R Soc Lond B 271:2131–2134Google Scholar
  22. Burt de Perrera T, Garcia C (2003) Amarillo fish (Girardinichthys multiradiatus) use visual landmarks to orient in space. Ethology 109:341–350Google Scholar
  23. Capaldi EA, Smith AD, Osborne JL, Fahrbach SE, Farris SM, Reynolds DR, Edwards AS, Martin A, Robinson GE, Poppy GM, Riley JR (2000) Ontogeny of orientation flight in the honeybee revealed by harmonic radar. Nature 403:537–540PubMedCrossRefGoogle Scholar
  24. Chittka L, Williams NM, Rasmussen H, Thomson JD (1999) Navigation without vision: bumblebee orientation in complete darkness. Proc R Soc Lond B 266:45–50CrossRefGoogle Scholar
  25. Cochran WW, Mouritsen H, Wikelski M (2004) Migrating songbirds recalibrate their magnetic compass daily from twilight cues. Science 304:405–408PubMedCrossRefGoogle Scholar
  26. Collett M, Collett TS (2000a) How do insects use path integration for their navigation? Biol Cybern 83:245–259PubMedCrossRefGoogle Scholar
  27. Collett TS, Collett M (2000b) Path integration in insects. Curr Opin Neurobiol 10:757–762PubMedCrossRefGoogle Scholar
  28. Collin SP, Whitehead D (2004) The functional roles of passive electroreception in non-electric fishes. Anim Biol 54:1–25CrossRefGoogle Scholar
  29. Dacke M, Nilsson D-E, Scholtz CH, Byrne M, Warrant EJ (2003) Insect orientation to polarized moonlight. Nature 424:33PubMedCrossRefGoogle Scholar
  30. Dehnhardt G, Mauck B, Hanke W, Bleckman H (2001) Hydrodynamic trail-following in harbor seals (Phoca vitulina). Science 293:102–104PubMedCrossRefGoogle Scholar
  31. Deutschlander ME, Freake MJ, Borland SC, Phillips JB, Madden RC, Anderson LE, Wilson BW(2003) Learned magnetic compass orientation by the Siberian hamster, Phodopus sungorus. Anim Behav 65:779–786CrossRefGoogle Scholar
  32. Di Bitetti MS, Janson CH (2000) When will the stork arrive? Patterns of birth seasonality in Neotropical primates. Am J Primatol 50:109–130PubMedGoogle Scholar
  33. Donati G, Lunardini A, Kappeler PM, Borgognini Tarli SM (2001) Nocturnal activity in the cathemeral red-fronted lemur (Eulemur fulvus rufus), with observations during a lunar eclipse. Am J Primatol 53:69–78PubMedCrossRefGoogle Scholar
  34. Dornhaus A, Chittka L (1999) Insect behaviour: evolutionary origins of bee dances. Nature 401:38CrossRefGoogle Scholar
  35. Dornhaus A, Chittka L (2004) Why do honey bees dance? Behav Ecol Sociobiol 55:395–401CrossRefGoogle Scholar
  36. Durou S, Lauga J, Dejan A (2001) Intensive food searching in humid patches: adaptation of a myrmicine ant to environmental constraints. Behaviour 138:251–259CrossRefGoogle Scholar
  37. Dyer FC, Dickinson JA (1996) Sun-compass learning in insects: representation in a simple mind. Curr Direct Psychol Sci 5:67–72Google Scholar
  38. Emde G von der, Schwarz S, Gomez L, Budelli R, Grant K (1998) Electric fish measure distance in the dark. Nature 395:890–894PubMedGoogle Scholar
  39. Engelmann J, Hanke W, Bleckmann H (2002) Lateral line reception in still and running water. J Comp Physiol A 188:513–526Google Scholar
  40. Erkert HG (2002) Aktivitätsperiodik der Chiroptera. In: Fischer MS, Niethammer J, Schliemann H, Starck D (Hrsg) Handbuch der Zoologie. Band VIII: Mammalia. Teilband 61: Chiroptera. W de Gruyter, Berlin New York, pp 83–129Google Scholar
  41. Esch HE, Zhang S, Srinivasan MV, Tautz J (2001) Honeybee dances communicate distances measured by optic flow. Nature 411:581–583PubMedCrossRefGoogle Scholar
  42. Fay RR, Popper AN (2000) Evolution of hearing in vertebrates: the inner ears and processing. Hear Res 149:1–10PubMedCrossRefGoogle Scholar
  43. Fernald RD (2000) Evolution of eyes. Curr Opin Neurobiol 10:444–450PubMedCrossRefGoogle Scholar
  44. Flamarique IN, Browman HI (2001) Foraging and prey-search behaviour of small juvenile rainbow trout (Oncorhynchus mykiss) under polarized light. J Exp Biol 204:2415–2422PubMedGoogle Scholar
  45. Fransson T, Jakobsson S, Johansson P, Kullberg C, Lind J, Vallin A (2001) Magnetic cues trigger extensive refuelling. Nature 414:35–36PubMedCrossRefGoogle Scholar
  46. Frisch K von (1967) The Dance Language and Orientation of Bees. Belknap Press of Harvard Univ Press, Cambridge/MAGoogle Scholar
  47. Fry SN, Wehner R (2002) Honey bees store landmarks in an egocentric frame of reference. J Comp Physiol A 187:1009–1016CrossRefGoogle Scholar
  48. Gagliardo A, Ioalè P, Odetti F, Bingman VP (2001) The ontogeny of the homing pigeon navigational map: evidence for a sensitive learning period. Proc R Soc Lond B 268:197–202CrossRefGoogle Scholar
  49. Gereta E, Wolanski E (1998) Wildlife-water quality interactions in the Serengeti National Park, Tanzania. Afr J Ecol 36:1–14CrossRefGoogle Scholar
  50. Gilbert F, Elsner N (2000) Directional hearing of a grasshopper in the field. J Exp Biol 203:983–993PubMedGoogle Scholar
  51. Goel N, Lee TM (1997) Social cues modulate free-running circadian activity rhythms in the diurnal rodent, Octodon degus. Am J Physiol 273:R797–804PubMedGoogle Scholar
  52. Gursky S (2003) Lunar philia in a nocturnal primate. Int J Primatol 24:351–367CrossRefGoogle Scholar
  53. Gwinner E (1996) Circadian and circannual programmes in avian migration. J Exp Biol 199:39–48PubMedGoogle Scholar
  54. Gwinner E, Brandstätter R (2001) Complex bird clocks. Phil Trans R Soc Lond B 356:1801–1810CrossRefGoogle Scholar
  55. Hagstrum JT (2000) Infrasound and the avian navigational map. J Ex p Biol 203:1103–1111Google Scholar
  56. Halle S, Stenseth NC (1994) Microtine ultradian rhythm of activity: an evaluation of different hypotheses on the triggering mechanism. Mammal Rev 24:17–39Google Scholar
  57. Harley HE, Putman EA, Roitblat HL (2003) Bottlenose dolphins perceive object features through echolocation. Nature 424:667–669PubMedCrossRefGoogle Scholar
  58. Hau M (2001) Timing of breeding in variable environments: tropical birds as model systems. Horm Behav 40:281–290PubMedCrossRefGoogle Scholar
  59. Heldmaier G, Neuweiler G (2003) Vergleichende Tierphysiologie. Band 1. Springer, HeidelbergGoogle Scholar
  60. Helfrich-Forster C, Stengl M, Homberg U (1998) Organization of the circadian system in insects. Chronobiol Int 15:567–594PubMedCrossRefGoogle Scholar
  61. Holland RA (2003) The role of visual landmarks in the avian familiar area map. J Exp Biol 206:1773–1778PubMedCrossRefGoogle Scholar
  62. Humston R, Ault JS, Lutcavage M, Olson DB (2000) Schooling and migration of large pelagic fishes relative to environmental cues. Fisheries Oceanography 9:136–146CrossRefGoogle Scholar
  63. Jetz W, Steffen J, Linsenmair KE (2003) Effects of light and prey availability on nocturnal, lunar and seasonal activity of tropical nightjars. Oikos 103:627–639CrossRefGoogle Scholar
  64. Kamil AC, Cheng K (2001) Way-finding and landmarks: the multiple-bearings hypothesis. J Exp Biol 204:103–113PubMedGoogle Scholar
  65. Kappeler PM, Erkert HG (2003) On the move around the clock: correlates and determinants of cathemeral activity in wild redfronted lemurs (Eulemur fulvus rufus). Behav Ecol Sociobiol 54:359–369CrossRefGoogle Scholar
  66. Keller TA, Powell I, Weissburg MJ (2003) Role of olfactory appendages in chemically mediated orientation of blue crabs. Mar Ecol Progr Ser 261:217–231Google Scholar
  67. Kiltie RA (2000) Scaling of visual acuity with body size in mammals and birds. Funct Ecol 14:226–234CrossRefGoogle Scholar
  68. Kimchi T, Etienne AS, Terkel J (2004) A subterranean mammal uses the magnetic compass for path integration. Proc Natl Acad Sci USA 101:1105–1109PubMedCrossRefGoogle Scholar
  69. Körtner G, Geiser F (2000) Torpor and activity patterns in free-ranging sugar gliders Petaurus breviceps (Marsupialia). Oecologia 123:350–357Google Scholar
  70. Kristensen EA, Closs GP (2004) Anti-predator response of naive and experienced common bully to chemical alarm cues. J Fish Biol 64:643–652CrossRefGoogle Scholar
  71. Kullberg C, Lind J, Fransson T, Jakobsson S, Vallin A (2003) Magnetic cues and time of season affect fuel deposition in migratory thrush nightingales (Luscinia luscinia). Proc R Soc Lond B 270:373–378CrossRefGoogle Scholar
  72. Labhart T, Meyer EP (2002) Neural mechanisms in insect navigation: polarization compass and odometer. Curr Opin Neurobiol 12:707–714PubMedCrossRefGoogle Scholar
  73. Layne JE, Barnes WJP, Duncan LMJ (2003) Mechanisms of homing in the fiddler crab Uca rapax. 2. Information sources and frame of reference for a path integration system. J Exp Biol 206:4425–4442PubMedGoogle Scholar
  74. Levine JD, Funes P, Dowse HB, Hall JC (2002) Resetting the circadian clock by social experience in Drosophila melanogaster. Science 298:2010–2012PubMedCrossRefGoogle Scholar
  75. Lohmann KJ, Lohmann CMF, Ehrhart LM, Bagley DA, Swing T (2004) Geomagnetic map used in sea-turtle navigation. Nature 428:909PubMedCrossRefGoogle Scholar
  76. Marhold S, Wiltschko W (1997) A magnetic polarity compass for direction finding in a subterranean mammal. Naturwissenschaften 84:421–423CrossRefGoogle Scholar
  77. Menzel R, Brandt R, Gumbert A, Komischke B, Kunze J (2000) Two spatial memories for honeybee navigation. Proc R Soc Lond B 267:961–968Google Scholar
  78. Menzel R, Greggers U, Smith A, Berger S, Brandt R, Brunke S, Bundrock G, Hülse S, Plümpe T, Schaupp F, Schüttler E, Stach S, Stindt J, Stollhoff N, Watzl S (2005) Honey bees navigate according to a map-like spatial memory. Proc Natl Acad Sci USA 102:3040–3045PubMedCrossRefGoogle Scholar
  79. Møller AP (2001) Heritability of arrival date in a migratory bird. Proc R Soc Lond B 268:203–206Google Scholar
  80. Mondor EB, Roitberg BD (2003) Age-dependent fitness costs of alarm signaling in aphids. Can J Zool 81:757–762CrossRefGoogle Scholar
  81. Mora CV, Davidson M, Wild JM, Walker MM (2004) Magnetoreception and its trigeminal mediation in the homing pigeon. Nature 432:508–511PubMedCrossRefGoogle Scholar
  82. Mouritsen H, Larsen ON (1998) Migrating young pied flycatchers Ficedula hypoleuca do not compensate for geographic displacements. J Exp Biol 201:2927–2934Google Scholar
  83. Mouritsen H, Larsen ON (2001) Migrating songbirds tested in computercontrolled Emlen funnels use stellar cues for a time-independent compass. J Exp Biol 204:3855–3865PubMedGoogle Scholar
  84. Müller M, Wehner R (1988) Path integration in desert ants, Cataglyphis fortis. Proc Natl Acad Sci USA 85:5287–5290PubMedGoogle Scholar
  85. Naylor E (2001) Marine animal behaviour in relation to lunar phase. Earth Moon Planets 85–86:291–302Google Scholar
  86. Neuweiler G (1990) Auditory adaptations for prey capture in echolocating bats. Physiol Rev 70:615–641PubMedGoogle Scholar
  87. Oosthuizen MK, Cooper HM, Bennett NC (2003) Circadian rhythms of locomotor activity in solitary and social species of African mole-rats (Family: Bathyergidae). J Biol Rhythms 18:481–490PubMedCrossRefGoogle Scholar
  88. Oster H, Maronde E, Albrecht U (2002) The circadian clock as a molecular calendar. Chronobiol Int 19:507–516PubMedCrossRefGoogle Scholar
  89. Palmer JD (2000) The clocks controlling the tide-associated rhythms of intertidal animals. BioEssays 22:32–37PubMedCrossRefGoogle Scholar
  90. Perdeck AC (1958) Two types of orientation in migrating Sturnus vulgaris and Fringilla coelebs as revealed by displacement experiments. Ardea 46:1–37Google Scholar
  91. Pereira ME, Strohecker RA, Cavigelli SA, Hughes CL, Pearson DD (1999) Metabolic strategy and social behavior in Lemuridae. In: Rasamimanana H, Rakotosamimanana B, Ganzhorn JU, Goodman SM (eds) New Directions in Lemur Studies. Plenum, New York, pp 93–118Google Scholar
  92. Pulido F, Berthold P, Mohr G, Querner U (2001) Heritability of the timing of autumn migration in a natural bird population. Proc R Soc Lond B 268:953–959Google Scholar
  93. Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418:935–941PubMedCrossRefGoogle Scholar
  94. Rinkwitz S, Bober E, Baker R (2001) Development of the vertebrate inner ear. Annu NY Acad Sci 942:1–14Google Scholar
  95. Rosenberg J, Burt PJA (1999) Windborne displacements of desert locusts from Africa to the Caribbean and South America. Aerobiologica 15:167–175Google Scholar
  96. Saigusa M, Kawagoye O (1997) Circatidal rhythm of an intertidal crab, Hemigrapsus sanguineus: synchrony with unequal tide height and involvement of a light-response mechanism. Marine Biol 129:87–96CrossRefGoogle Scholar
  97. Sandberg R, Moore FR (1996) Migratory orientation in red-eyed vireos, Vireo olivaceus, in relation to energetic condition and ecological context. Behav Ecol Sociobiol 39:1–10CrossRefGoogle Scholar
  98. Schmidt-Koenig K (1960) The sun azimuth compass: one factor in the orientation of homing pigeons. Science 131:826–827PubMedGoogle Scholar
  99. Schultz TF, Kay SA (2003) Circadian clocks in daily and seasonal control of development. Science 301:326–328PubMedCrossRefGoogle Scholar
  100. Seyfarth EA, Hergenröther R, Ebbes H, Barth FG (1982) Idiothetic orientation of a wandering spider: compensation of detours and estimates of goal distance. Behav Ecol Sociobiol 11:139–148CrossRefGoogle Scholar
  101. Sheeba V, Chandrashekaran MK, Joshi A, Sharma VK (2002) Locomotor activity rhythm in Drosophila melanogaster after 600 generations in an aperiodic environment. Naturwissenschaften 89:512–514PubMedCrossRefGoogle Scholar
  102. Shi Y, Radlwimmer FB, Yokoyama S (2001) Molecular genetics and the evolution of ultraviolet vision in vertebrates. Proc Natl Acad Sci USA 98:11731–11736PubMedGoogle Scholar
  103. Shine R, Sun L-X (2003) Attack strategy of an ambush predator: which attributes of the prey trigger a pit-viper’s strike? Funct Ecol 17:340–348Google Scholar
  104. Siemers BM, Schnitzler H-U (2004) Echolocation signals reflect niche differentiation in five sympatric congeneric bat species. Nature 429:657–661PubMedCrossRefGoogle Scholar
  105. Sillero-Zubiri C, Macdonald DW (1998) Scent-marking and territorial behaviour of Ethiopian wolves, Canis simensis. J Zool Lond 245:351–361Google Scholar
  106. Srinivasan M, Zhang S, Altwein M, Tautz J (2000) Honeybee navigation: nature and calibration of the ‘odometer’. Science 287:851–853PubMedCrossRefGoogle Scholar
  107. Sukhedo MVK, Sukhedo SC (2004) Trematode behaviours and the perceptual worlds of parasites. Can J Zool 82:292–315Google Scholar
  108. Teeling EC, Scally M, Kao DJ, Romagnoli ML, Springer MS, Stanhope MJ (2000) Molecular evidence regarding the origin of echolocation and flight in bats. Nature 403:188–192PubMedGoogle Scholar
  109. Tomioka K, Abdelsalam S (2004) Circadian organization in hemimetabolous insects. Zool Sci 21:1153–1162PubMedCrossRefGoogle Scholar
  110. Topping MG, Millar JS, Goddard JA (1999) The effects of moonlight on nocturnal activity in bushy-tailed wood rats (Neotoma cinerea). Can J Zool 77:480–485CrossRefGoogle Scholar
  111. Ugolini A, Fantini T, Innocenti R (2003) Orientation at night: an innate moon compass in sandhoppers (Amphipoda: Talitridae). Proc R Soc Lond B 270:279–281CrossRefGoogle Scholar
  112. Usman K, Habersetzer J, Subbaraj R, Gopalkrishnaswamy G, Paramandam K (1980) Behavior of bats during a lunar eclipse. Behav Ecol Sociobiol 7:79–81CrossRefGoogle Scholar
  113. Vickers NJ (2000) Mechanisms of animal navigation in odor plumes. Biol Bull 198:203–212PubMedGoogle Scholar
  114. Warrant EJ, Kelber A, Gislen A, Greiner B, Ribi W, Wcislo WT (2004) Nocturnal vision and landmark orientation in a tropical halictid bee. Curr Biol 14:1309–1318PubMedCrossRefGoogle Scholar
  115. Wehner R (1989) Neurobiology of polarization vision. Trends Neurosci 12:353–359PubMedCrossRefGoogle Scholar
  116. Wehner R (1997) Sensory systems and behaviour. In: Krebs JR, Davies NB (eds) Behavioural Ecology. Blackwell, Oxford, pp 19–41Google Scholar
  117. Wehner R (2001) Polarization vision-a uniform sensory capacity? J Exp Biol 204:2589–2596PubMedGoogle Scholar
  118. Weissburg MJ, Doall MH, Yen J (1998) Following the invisible trail: kinematic analysis of mate-tracking in the copepod Temora longicornis. Phil Trans R Soc Lond B 353:701–712CrossRefGoogle Scholar
  119. Welch JM, Forward RB (2001) Flood title transport of blue crab, Callinectes sapidus, postlarvae: behavioral responses to salinity and turbulence. Marine Biol 139:911–918Google Scholar
  120. Wikelski M, Tarlow EM, Raim A, Diehl RH, Larkin RP, Visser GH (2003) Costs of migration in free-flying songbirds. Nature 423:704PubMedCrossRefGoogle Scholar
  121. Wiltschko W, Wiltschko R (1972) Magnetic compass of European robins. Science 176:62–64PubMedGoogle Scholar
  122. Wiltschko W, Wiltschko R (2002) Magnetic compass orientation in birds and its physiological basis. Naturwissenschaften 89:445–452PubMedCrossRefGoogle Scholar
  123. Wiltschko W, Traudt J, Güntürkün O, Prior H, Wiltschko R (2002) Lateralization of magnetic compass orientation in a migratory bird. Nature 419:467–470PubMedCrossRefGoogle Scholar
  124. Winne CT, Keck MB (2004) Daily activity patterns of whiptail lizards (Squamata: Teiidae: Aspidoscelis): a proximate response to environmental conditions or an endogenous rhythm? Funct Ecol 18:314–321CrossRefGoogle Scholar
  125. Wohlgemuth S, Ronacher B, Wehner R (2001) Ant odometry in the third dimension. Nature 411:795–798PubMedCrossRefGoogle Scholar
  126. Wyatt TD (2003) Pheromones and Animal Behaviour. Cambridge Univ Press, CambridgeGoogle Scholar
  127. Yamahira K (2004) How do multiple environmental cycles in combination determine reproductive timing in marine organisms? A model and test. Funct Ecol 18:4–15CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Personalised recommendations