Glycosylphosphatidylinositols in Malaria Pathogenesis and Immunity: Potential for Therapeutic Inhibition and Vaccination

  • C. S. Boutlis
  • E. M. Riley
  • N. M. Anstey
  • J. B. de Souza
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 297)


Glycosylphosphatidylinositols (GPIs) are found in the outer cell membranes of all eukaryotes. GPIs anchor a diverse range of proteins to the surface of Plasmodium falciparum, but may also exist free of protein attachment. In vitro and in vivo studies have established GPIs as likely candidate toxins in malaria, consistent with the prevailing paradigmthat attributes induction of inflammatory cytokines, fever and other pathology to parasite toxins released when schizonts rupture. Although evolutionarily conserved, sufficient structural differences appear to exist that impart upon plasmodial GPIs the ability to activate second messengers in mammalian cells and elicit immune responses. In populations exposed to P. falciparum, the antibody response to purified GPIs is characterised by a predominance of immunoglobulin (Ig)G over IgM and an increase in the prevalence, level and persistence of responses with increasing age. It remains unclear, however, if these antibodies or other cellular responses to GPIs mediate anti-toxic immunity in humans; anti-toxic immunity may comprise either reduction in the severity of disease or maintenance of the malaria-tolerant state (i.e. persistent asymptomatic parasitaemia). P. falciparum GPIs are potentially amenable to specific therapeutic inhibition and vaccination;more needs to be known about their dual roles in malaria pathogenesis and protection for these strategies to succeed.


Plasmodium Falciparum Severe Malaria Cerebral Malaria Malarial Tolerance Endotoxin Tolerance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aidoo M, McElroy PD, Kolczak MS, Terlouw DJ, ter Kuile FO, Nahlen B, Lal AA, Udhayakumar V (2001) Tumor necrosis factor-alpha promoter variant 2 (TNF2) is associated with pre-term delivery, infant mortality, and malaria morbidity in western Kenya: Asembo Bay Cohort Project IX. Genet Epidemiol 21:201–211PubMedCrossRefGoogle Scholar
  2. Akira S, Hemmi H (2003) Recognition of pathogen-associated molecular patterns by TLR family. Immunol Lett 85:85–95PubMedCrossRefGoogle Scholar
  3. Al Yaman F, Genton B, Anders RF, Falk M, Triglia T, Lewis D, Hii J, Beck HP, Alpers MP (1994) Relationship between humoral response to Plasmodium falciparum merozoite surface antigen-2 and malaria morbidity in a highly endemic area of Papua New Guinea. Am J Trop Med Hyg 51:593–602Google Scholar
  4. Al Yaman F, Genton B, Falk M, Anders RF, Lewis D, Hii J, Beck HP, Alpers MP (1995a) Humoral response to Plasmodium falciparum ring-infected erythrocyte surface antigen in a highly endemic area of Papua New Guinea. Am J Trop Med Hyg 52:66–71Google Scholar
  5. Al Yaman F, Genton B, Kramer KJ, Taraika J, Chang SP, Hui GS, Alpers MP (1995b) Acquired antibody levels to Plasmodium falciparum merozoite surface antigen 1 in residents of a highly endemic area of Papua New Guinea. Trans R Soc Trop Med Hyg 89:555–559CrossRefGoogle Scholar
  6. Anstey NM, Weinberg JB, Hassanali MY, Mwaikambo ED, Manyenga D, Misukonis MA, Arnelle DR, Hollis D, McDonald MI, Granger DL (1996) Nitric oxide in Tanzanian children with malaria: inverse relationship between malaria severity and nitric oxide production/nitric oxide synthase type 2 expression. J Exp Med 184:557–567PubMedCrossRefGoogle Scholar
  7. Anstey N, Weinberg J, Granger D (1999a) Nitric oxide and malaria. In: Fang FC (ed) Nitric oxide and infection. Plenum Publishing Corp., New York, pp 311–341Google Scholar
  8. Anstey NM, Weinberg JB, Wang Z, Mwaikambo ED, Duffy PE, Granger DL (1999b) Effects of age and parasitemia on nitric oxide production/leukocyte nitric oxide synthase type 2 expression in asymptomatic, malaria-exposed children. Am J Trop Med Hyg 61:253–258PubMedGoogle Scholar
  9. Arese P, Schwarzer E (1997) Malarial Pigment (Haemozoin)-a Very Active Inert Substance. Annals of Tropical Medicine & Parasitology 91:501–516CrossRefGoogle Scholar
  10. Artavanis-Tsakonas K, Tongren JE, Riley EM(2003) The war between the malaria parasite and the immune system: immunity, immunoregulation and immunopathology. Clin Exp Immunol 133:145–152PubMedCrossRefGoogle Scholar
  11. Baird JK (1998) Age-dependent characteristics of protection v. susceptibility to Plasmodium falciparum. Ann Trop Med Parasitol 92:367–390PubMedCrossRefGoogle Scholar
  12. Baird JK, Masbar S, Basri H, Tirtokusumo S, Subianto B, Hoffman SL (1998) Agedependent susceptibility to severe disease with primary exposure to Plasmodium falciparum. J Infect Dis 178:592–595PubMedGoogle Scholar
  13. Basilico N, Tognazioli C, Picot S, Ravagnani F, Taramelli D (2003) Synergistic and antagonistic interactions between haemozoin and bacterial endotoxin on human and mouse macrophages. Parassitologia 45:135–140PubMedGoogle Scholar
  14. Bate CA, Kwiatkowski D (1994a) A monoclonal antibody that recognizes phosphatidylinositol inhibits induction of tumor necrosis factor alpha by different strains of Plasmodium falciparum. Infect Immun 62:5261–5266PubMedGoogle Scholar
  15. Bate CA, Kwiatkowski D (1994b) Inhibitory immunoglobulin M antibodies to tumor necrosis factor-inducing toxins in patients with malaria. Infect Immun 62:3086–3091PubMedGoogle Scholar
  16. Bate CA, Taverne J, Playfair JH (1988) Malarial parasites induce TNF production by macrophages. Immunology 64:227–231PubMedGoogle Scholar
  17. Bate CA, Taverne J, Dave A, Playfair JH (1990) Malaria exoantigens induce T-independent antibody that blocks their ability to induce TNF. Immunology 70:315–320PubMedGoogle Scholar
  18. Bate CA, Taverne J, Bootsma HJ, Mason RC, Skalko N, Gregoriadis G, Playfair JH(1992a) Antibodies against phosphatidylinositol and inositol monophosphate specifically inhibit tumour necrosis factor induction by malaria exoantigens. Immunology 76:35–41PubMedGoogle Scholar
  19. Bate CA, Taverne J, Roman E, Moreno C, Playfair JH (1992b) Tumour necrosis factor induction by malaria exoantigens depends upon phospholipid. Immunology 75:129–135PubMedGoogle Scholar
  20. Baumgarth N (2000) A two-phase model of B-cell activation. Immunol Rev 176:171–180PubMedCrossRefGoogle Scholar
  21. Bayley JP, Ottenhoff TH, Verweij CL (2004) Is there a future for TNF promoter polymorphisms? Genes Immun 5:315–329PubMedCrossRefGoogle Scholar
  22. Bento CA, Melo MB, Previato JO, Mendonca-Previato L, Pecanha LM (1996) Glycoinositolphospholipids purified from Trypanosoma cruzi stimulate Ig production in vitro. J Immunol 157:4996–5001PubMedGoogle Scholar
  23. Berhe S, Schofield L, Schwarz RT, Gerold P (1999) Conservation of structure among glycosylphosphatidylinositol toxins from different geographic isolates of Plasmodium falciparum. Mol Biochem Parasitol 103:273–278PubMedCrossRefGoogle Scholar
  24. Beutler E, Gelbart T, West C (2001) Synergy between TLR2 and TLR4: a safety mechanism. Blood Cells Mol Dis 27:728–730PubMedCrossRefGoogle Scholar
  25. Biswas S, Karmarkar MG, Sharma YD(2001) Antibodies detected against Plasmodium falciparum haemozoin with inhibitory properties to cytokine production. FEMS Microbiol Lett 194:175–179PubMedCrossRefGoogle Scholar
  26. Boisier P, Jambou R, Raharimalala L, Roux J (2002) Relationship between parasite density and fever risk in a community exposed to a low level of malaria transmission in Madagascar highlands. Am J Trop Med Hyg 67:137–140PubMedGoogle Scholar
  27. Boutlis CS, Gowda DC, Naik RS, Maguire GP, Mgone CS, Bockarie MJ, Lagog M, Ibam E, Lorry K, Anstey NM(2002) Antibodies to Plasmodium falciparum glycosylphosphatidylinositols: inverse association with tolerance of parasitemia in Papua New Guinean children and adults. Infect Immun 70:5052–5057PubMedCrossRefGoogle Scholar
  28. Boutlis CS, Fagan PK, Gowda DC, Lagog M, Mgone CS, Bockarie MJ, Anstey NM (2003a) Immunoglobulin G responses to Plasmodium falciparum glycosylphosphatidylinositols are short-lived and predominantly of the IgG3 subclass. J Infect Dis 187:862–865PubMedCrossRefGoogle Scholar
  29. Boutlis CS, Tjitra E, Maniboey H, Misukonis MA, Saunders JR, Suprianto S, Weinberg JB, Anstey NM (2003b) Nitric oxide production and mononuclear cell nitric oxide synthase activity in malaria-tolerant Papuan adults. Infect Immun 71:3682–3689PubMedCrossRefGoogle Scholar
  30. Boutlis CS, Weinberg JB, Baker J, Bockarie MJ, Mgone CS, Cheng Q, Anstey NM (2004) Nitric oxide production and nitric oxide synthase activity in malaria-exposed Papua New Guinean children and adults show longitudinal stability and no association with parasitemia. Infect Immun 72:6932–6938PubMedCrossRefGoogle Scholar
  31. Bruce MC, Donnelly CA, Alpers MP, Galinski MR, Barnwell JW, Walliker D, Day KP (2000) Cross-species interactions between malaria parasites in humans. Science 287:845–848PubMedCrossRefGoogle Scholar
  32. Bruna-Romero O, Rocha CD, Tsuji M, Gazzinelli RT (2004) Enhanced protective immunity against malaria by vaccination with a recombinant adenovirus encoding the circumsporozoite protein of Plasmodium lacking the GPI-anchoring motif. Vaccine 22:3575–3584PubMedCrossRefGoogle Scholar
  33. Calissano C, Modiano D, Sirima BS, Konate A, Sanou I, Sawadogo A, Perlmann H, Troye-Blomberg M, Perlmann P (2003) IgE antibodies to Plasmodium falciparum and severity of malaria in children of one ethnic group living in Burkina Faso. Am J Trop Med Hyg 69:31–35PubMedGoogle Scholar
  34. Campos MA, Almeida IC, Takeuchi O, Akira S, Valente EP, Procopio DO, Travassos LR, Smith JA, Golenbock DT, Gazzinelli RT (2001) Activation of Toll-like receptor-2 by glycosylphosphatidylinositol anchors from a protozoan parasite. J Immunol 167:416–423PubMedGoogle Scholar
  35. Chatterjee S, Mayor S (2001) The GPI-anchor and protein sorting. Cell Mol Life Sci 58:1969–1987PubMedCrossRefGoogle Scholar
  36. Chen R, Walter EI, Parker G, Lapurga JP, Millan JL, Ikehara Y, Udenfriend S, Medof ME (1998) Mammalian glycophosphatidylinositol anchor transfer to proteins and posttransfer deacylation. Proc Natl Acad Sci U S A 95:9512–9517PubMedCrossRefGoogle Scholar
  37. Clark IA (1978) Does endotoxin cause both the disease and parasite death in acute malaria and babesiosis? Lancet 2:75–77PubMedCrossRefGoogle Scholar
  38. Clark IA, Cowden WB (2003) The pathophysiology of falciparum malaria. Pharmacol Ther 99:221–260PubMedCrossRefGoogle Scholar
  39. Clark IA, Virelizier JL, Carswell EA, Wood PR (1981) Possible importance of macrophage-derived mediators in acute malaria. Infect Immun 32:1058–1066PubMedGoogle Scholar
  40. Clark IA, Cowden WB, Butcher GA, Hunt NH (1987) Possible roles of tumor necrosis factor in the pathology of malaria. Am J Pathol 129:192–199PubMedGoogle Scholar
  41. Clark IA, Gray KM, Rockett EJ, Cowden WB, Rockett KA, Ferrante A, Aggarwal BB (1992) Increased lymphotoxin in human malarial serum, and the ability of this cytokine to increase plasma interleukin-6 and cause hypoglycaemia in mice: implications for malarial pathology. Trans R Soc Trop Med Hyg 86:602–607PubMedCrossRefGoogle Scholar
  42. Clark IA, al Yaman FM, Cowden WB, Rockett KA (1996) Does malarial tolerance, through nitric oxide, explain the low incidence of autoimmune disease in tropical Africa? Lancet 348:1492–1494PubMedCrossRefGoogle Scholar
  43. Clark IA, al Yaman FM, Jacobson LS (1997) The biological basis of malarial disease. Int J Parasitol 27:1237–1249PubMedCrossRefGoogle Scholar
  44. Clark IA, Awburn MM, Harper CG, Liomba NG, Molyneux ME (2003a) Induction of HO-1 in tissue macrophages and monocytes in fatal falciparum malaria and sepsis. Malar J 2:41-PubMedCrossRefGoogle Scholar
  45. Clark IA, Awburn MM, Whitten RO, Harper CG, Liomba NG, Molyneux ME, Taylor TE (2003b) Tissue distribution of migration inhibitory factor and inducible nitric oxide synthase in falciparum malaria and sepsis in African children. Malar J 2:6-PubMedCrossRefGoogle Scholar
  46. Clark IA, Alleva LM, Mills AC, Cowden WB (2004) Pathogenesis of malaria and clinically similar conditions. Clin Microbiol Rev 17:509–539PubMedCrossRefGoogle Scholar
  47. Coban C, Ishii KJ, Kawai T, Hemmi H, Sato S, Uematsu S, Yamamoto M, Takeuchi O, Itagaki S, Kumar N, Horii T, Akira S (2005) Toll-like receptor 9 mediates innate immune activation by the malaria pigment hemozoin. J Exp Med 201:19–25PubMedCrossRefGoogle Scholar
  48. de Macedo CS, Shams-Eldin H, Smith TK, Schwarz RT, Azzouz N (2003) Inhibitors of glycosyl-phosphatidylinositol anchor biosynthesis. Biochimie 85:465–472PubMedCrossRefGoogle Scholar
  49. de Souza JB, Todd J, Krishegowda G, Gowda DC, Kwiatkowski D, Riley EM (2002) Prevalence and boosting of antibodies to Plasmodium falciparum glycosylphosphatidylinositols and evaluation of their association with protection from mild and severe clinical malaria. Infect Immun 70:5045–5051PubMedCrossRefGoogle Scholar
  50. Delorenzi M, Sexton A, Shams-Eldin H, Schwarz RT, Speed T, Schofield L (2002) Genes for glycosylphosphatidylinositol toxin biosynthesis in Plasmodium falciparum. Infect Immun 70:4510–4522PubMedCrossRefGoogle Scholar
  51. Dobrovolskaia MA, Vogel SN (2002) Toll receptors, CD14, and macrophage activation and deactivation by LPS. Microbes Infect 4:903–914PubMedCrossRefGoogle Scholar
  52. Dodoo D, Omer FM, Todd J, Akanmori BD, Koram KA, Riley EM (2002) Absolute Levels and Ratios of Proinflammatory and Anti-inflammatory Cytokine Production In Vitro Predict Clinical Immunity to Plasmodium falciparum Malaria. J Infect Dis 185:971–979PubMedCrossRefGoogle Scholar
  53. Duthie MS, Wleklinski-Lee M, Smith S, Nakayama T, Taniguchi M, Kahn SJ (2002) During Trypanosoma cruzi infection CD1d-restricted NKT cells limit parasitemia and augment the antibody response to a glycophosphoinositol-modified surface protein. Infect Immun 70:36–48PubMedCrossRefGoogle Scholar
  54. Eisenhaber B, Maurer-Stroh S, Novatchkova M, Schneider G, Eisenhaber F (2003) Enzymes and auxiliary factors for GPI lipid anchor biosynthesis and post-translational transfer to proteins. Bioessays 25:367–385PubMedCrossRefGoogle Scholar
  55. Elased KM, Gumaa KA, de Souza JB, Playfair JH, Rademacher TW (2004) Improvement of glucose homeostasis in obese diabetic db/db mice given Plasmodium yoelii glycosylphosphatidylinositols. Metabolism 53:1048–1053PubMedCrossRefGoogle Scholar
  56. English M, Waruiru C, Amukoye E, Murphy S, Crawley J, Mwangi I, Peshu N, Marsh K (1996) Deep breathing in children with severe malaria: indicator of metabolic acidosis and poor outcome. Am J Trop Med Hyg 55:521–524PubMedGoogle Scholar
  57. Engwerda CR, Mynott TL, Sawhney S, de Souza JB, Bickle QD, Kaye PM (2002) Locally up-regulated lymphotoxin alpha, not systemic tumor necrosis factor alpha, is the principle mediator of murine cerebral malaria. J Exp Med 195:1371–1377PubMedCrossRefGoogle Scholar
  58. Fahmi H, Charon D, Mondange M, Chaby R (1995) Endotoxin-induced desensitization of mouse macrophages is mediated in part by nitric oxide production. Infect Immun 63:1863–1869PubMedGoogle Scholar
  59. Fanning SL, Czesny B, Sedegah M, Carucci DJ, van Gemert GJ, Eling W, Williamson KC (2003) A glycosylphosphatidylinositol anchor signal sequence enhances the immunogenicity of a DNA vaccine encoding Plasmodium falciparum sexual-stage antigen, Pfs230. Vaccine 21:3228–3235PubMedCrossRefGoogle Scholar
  60. Farnert A, Snounou G, Rooth I, Bjorkman A (1997) Daily dynamics of Plasmodium falciparum subpopulations in asymptomatic children in a holoendemic area. Am J Trop Med Hyg 56:538–47PubMedGoogle Scholar
  61. Ferguson MA (1999) The structure, biosynthesis and functions of glycosylphosphatidylinositol anchors, and the contributions of trypanosome research. J Cell Sci 112 ( Pt 17):2799–2809PubMedGoogle Scholar
  62. Ferguson MA (2000) Glycosylphosphatidylinositol biosynthesis validated as a drug target for African sleeping sickness. Proc Natl Acad Sci U S A 97:10673–10675PubMedCrossRefGoogle Scholar
  63. Ferlito M, Squadrito F, Halushka PV, Cook JA (2001) Signal transduction events in Chinese hamster ovary cells expressing human CD14; effect of endotoxin desensitization. Shock 15:291–296PubMedCrossRefGoogle Scholar
  64. Ferrante A, Beard LJ, Feldman RG (1990) IgG subclass distribution of antibodies to bacterial and viral antigens. Pediatr Infect Dis J 9:S16–S24PubMedGoogle Scholar
  65. Fujieda S, Sieling PA, Modlin RL, Saxon A (1998) CD1-restricted T-cells influence IgG subclass and IgE production. J Allergy Clin Immunol 101:545–551PubMedCrossRefGoogle Scholar
  66. Gatton ML, Cheng Q (2002) Evaluation of the pyrogenic threshold for Plasmodium falciparum malaria in naive individuals. Am J Trop Med Hyg 66:467–473PubMedGoogle Scholar
  67. Gerold P, Dieckmann-Schuppert A, Schwarz RT (1994) Glycosylphosphatidylinositols synthesized by asexual erythrocytic stages of the malarial parasite, Plasmodium falciparum. Candidates for plasmodial glycosylphosphatidylinositol membrane anchor precursors and pathogenicity factors. J Biol Chem 269:2597–2606PubMedGoogle Scholar
  68. Gerold P, Vivas L, Ogun SA, Azzouz N, Brown KN, Holder AA, Schwarz RT (1997) Glycosylphosphatidylinositols of Plasmodium chabaudi chabaudi: a basis for the study of malarial glycolipid toxins in a rodent model. Biochem J 328 (Pt 3):905–911PubMedGoogle Scholar
  69. Golgi C (1886) Sull’infezione malarica. Archivio Per Le Scienze Mediche 10:109–135Google Scholar
  70. Gowda DC (2002) Structure and activity of glycosylphosphatidylinositol anchors of Plasmodium falciparum. Microbes Infect 4:983–990CrossRefGoogle Scholar
  71. Grau GE, Taylor TE, Molyneux ME, Wirima JJ, Vassalli P, Hommel M, Lambert PH (1989) Tumor necrosis factor and disease severity in children with falciparum malaria. N Engl J Med 320:1586–1591PubMedCrossRefGoogle Scholar
  72. Grimme SJ, Westfall BA, Wiedman JM, Taron CH, Orlean P (2001) The essential Smp3 protein is required for addition of the side-branching fourth mannose during assembly of yeast glycosylphosphatidylinositols. J Biol Chem 276:27731–27739PubMedCrossRefGoogle Scholar
  73. Gumperz JE, Roy C, Makowska A, Lum D, Sugita M, Podrebarac T, Koezuka Y, Porcelli SA, Cardell S, Brenner MB, Behar SM (2000) Murine CD1d-restricted T cell recognition of cellular lipids. Immunity 12:211–221PubMedCrossRefGoogle Scholar
  74. Hansen DS, Siomos MA, Buckingham L, Scalzo AA, Schofield L (2003a) Regulation of murine cerebral malaria pathogenesis by CD1d-restricted NKT cells and the natural killer complex. Immunity 18:391–402PubMedCrossRefGoogle Scholar
  75. Hansen DS, Siomos MA, Koning-Ward T, Buckingham L, Crabb BS, Schofield L (2003b) CD1d-restricted NKT cells contribute to malarial splenomegaly and enhance parasite-specific antibody responses. Eur J Immunol 33:2588–2598PubMedCrossRefGoogle Scholar
  76. Heyman A, Beeson PB (1949) Influence of various disease states upon the febrile response to intravenous injection of typhoid bacterial pyrogen: with particular reference to malaria and cirrhosis of the liver. J Lab Clin Med 34:1400–1403PubMedGoogle Scholar
  77. Hisaeda H, Maekawa Y, Iwakawa D, Okada H, Himeno K, Kishihara K, Tsukumo S, Yasutomo K (2004) Escape of malaria parasites from host immunity requires CD4+ CD25+ regulatory T cells. Nat Med 10:29–30PubMedCrossRefGoogle Scholar
  78. Hobbs MR, Udhayakumar V, Levesque MC, Booth J, Roberts JM, Tkachuk AN, Pole A, Coon H, Kariuki S, Nahlen BL, Mwaikambo ED, Lal AL, Granger DL, Anstey NM, Weinberg JB (2002) A new NOS2 promoter polymorphism associated with increased nitric oxide production and protection fromseveremalaria in Tanzanian and Kenyan children. Lancet 360:1468–1475PubMedCrossRefGoogle Scholar
  79. Hoessli DC, Poincelet M, Gupta R, Ilangumaran S, Nasir uD (2003) Plasmodium falciparum merozoite surface protein 1. Eur J Biochem 270:366–375PubMedCrossRefGoogle Scholar
  80. Hudson Keenihan SN, Ratiwayanto S, Soebianto S, Krisin, Marwoto H, Krishnegowda G, Gowda DC, Bangs MJ, Fryauff DJ, Richie TL, Kumar S, Baird JK (2003) Age-dependent impairment of IgG responses to glycosylphosphatidylinositol with equal exposure to Plasmodium falciparum among Javanese migrants to Papua, Indonesia. Am J Trop Med Hyg 69:36–41PubMedGoogle Scholar
  81. Hunt NH, Grau GE (2003) Cytokines: accelerators and brakes in the pathogenesis of cerebral malaria. Trends Immunol 24:491–499PubMedCrossRefGoogle Scholar
  82. Iuvone T, D’Acquisto F, Carnuccio R, Di Rosa M (1996) Nitric oxide inhibits LPS-induced tumor necrosis factor synthesis in vitro and in vivo. Life Sci 59:L207–L211CrossRefGoogle Scholar
  83. Jaramillo M, Gowda DC, Radzioch D, Olivier M (2003) Hemozoin increases IFN-gamma-inducible macrophage nitric oxide generation through extracellular signal-regulated kinase-and NF-kappa B-dependent pathways. J Immunol 171:4243–4253PubMedGoogle Scholar
  84. Jaramillo M, Plante I, Ouellet N, Vandal K, Tessier PA, Olivier M (2004) Hemozoininducible proinflammatory events in vivo: potential role in malaria infection. J Immunol 172:3101–3110PubMedGoogle Scholar
  85. Jaramillo M, Godbout M, Olivier M (2005) Hemozoin inducesmacrophage chemokine expression through oxidative stress-dependent and-independent mechanisms. J Immunol 174:475–484PubMedGoogle Scholar
  86. Johnson A, Leke R, Harun L, Ginsberg C, Ngogang J, Stowers A, Saul A, Quakyi IA (2000) Interaction of HLA and age on levels of antibody to Plasmodium falciparum rhoptry-associated proteins 1 and 2. Infect Immun 68:2231–2236PubMedCrossRefGoogle Scholar
  87. Joyce S, Woods AS, Yewdell JW, Bennink JR, De S, Boesteanu A, Balk SP, Cotter RJ, Brutkiewicz RR (1998) Natural ligand of mouse CD1d1: cellular glycosylphosphatidylinositol. Science 279:1541–1544PubMedCrossRefGoogle Scholar
  88. Kastenbauer S, Ziegler-Heitbrock HW (1999) NF-kappaB1 (p50) is upregulated in lipopolysaccharide tolerance and can block tumor necrosis factor gene expression. Infect Immun 67:1553–1559PubMedGoogle Scholar
  89. Kaul R, McGeer A, Norrby-Teglund A, Kotb M, Schwartz B, O’Rourke K, Talbot J, Low DE (1999) Intravenous immunoglobulin therapy for streptococcal toxic shock syndrome-a comparative observational study. The Canadian Streptococcal Study Group. Clin Infect Dis 28:800–807PubMedCrossRefGoogle Scholar
  90. Keller CC, Kremsner PG, Hittner JB, Misukonis MA, Weinberg JB, Perkins DJ (2004) Elevated nitric oxide production in children with malarial anemia: hemozoin-induced nitric oxide synthase type 2 transcripts and nitric oxide in blood mononuclear cells. Infect Immun 72:4868–4873PubMedCrossRefGoogle Scholar
  91. Kern P, Hemmer CJ, Van Damme J, Gruss HJ, Dietrich M (1989) Elevated tumor necrosis factor alpha and interleukin-6 serum levels as markers for complicated Plasmodium falciparum malaria. Am J Med 87:139–143PubMedCrossRefGoogle Scholar
  92. Kimmel J, Ogun SA, de Macedo CS, Gerold P, Vivas L, Holder AA, Schwarz RT, Azzouz N (2003) Glycosylphosphatidyl-inositols in murine malaria: Plasmodium yoelii yoelii. Biochimie 85:473–481PubMedCrossRefGoogle Scholar
  93. Kinoshita T, Inoue N (2000) Dissecting and manipulating the pathway for glycosylphosphatidylinositol-anchor biosynthesis. Curr Opin Chem Biol 4:632–638PubMedCrossRefGoogle Scholar
  94. Krishnegowda G, Hajjar AM, Zhu J, Douglass EJ, Uematsu S, Akira S, Woods AS, Gowda DC (2004) Induction of proinflammatory responses inmacrophages by the glycosylphosphatidylinositols (GPIs) of Plasmodium falciparum: Cell signaling receptors, GPI structural requirement, and regulation of GPI activity. J Biol Chem Dec 28:Epub ahead of printGoogle Scholar
  95. Kronenberg M, Naidenko O, Koning F (2001) Right on target: novel approaches for the direct visualization of CD1-specific T cell responses. Proc Natl Acad Sci U S A 98:2950–2952PubMedCrossRefGoogle Scholar
  96. Kwiatkowski D (1995) Malarial toxins and the regulation of parasite density. Parasitology Today 11:206–212PubMedCrossRefGoogle Scholar
  97. Kwiatkowski D, Cannon JG, Manogue KR, Cerami A, Dinarello CA, Greenwood BM (1989) Tumour necrosis factor production in Falciparum malaria and its association with schizont rupture. Clin Exp Immunol 77:361–366PubMedGoogle Scholar
  98. Kwiatkowski D, Molyneux ME, Stephens S, Curtis N, Klein N, Pointaire P, Smit M, Allan R, Brewster DR, Grau GE (1993) Anti-TNF therapy inhibits fever in cerebral malaria. Q J Med 86:91–98PubMedGoogle Scholar
  99. Latz E, Visintin A, Lien E, Fitzgerald K, Monks BG, Kurt-Jones E, Golenbock DT, Espevik T (2002) LPS rapidly traffics to and from the Golgi apparatus with the TLR4/MD-2/CD14 complex in a process that is distinct from the initiation of signal transduction. J Biol Chem 277:47834–47843PubMedCrossRefGoogle Scholar
  100. Le Hesran Y, Akiana J, Ndiaye eH, Dia M, Senghor P, Konate L (2004) Severe malaria attack is associated with high prevalence of Ascaris lumbricoides infection among children in rural Senegal. Trans R Soc Trop Med Hyg 98:397–399PubMedCrossRefGoogle Scholar
  101. Le Hesran JY (2005) Reply to comment on: Severe malaria attack is associated with high prevalence of Ascaris lumbricoides infection among children in rural Senegal. Trans R Soc Trop Med Hyg 99:164–165CrossRefGoogle Scholar
  102. Lehner MD, Morath S, Michelsen KS, Schumann RR, Hartung T (2001) Induction of cross-tolerance by lipopolysaccharide and highly purified lipoteichoic acid via different Toll-like receptors independent of paracrine mediators. J Immunol 166:5161–5167PubMedGoogle Scholar
  103. Li C, Sanni LA, Omer F, Riley E, Langhorne J (2003) Pathology of Plasmodium chabaudi chabaudi infection and mortality in interleukin-10-deficient mice are ameliorated by anti-tumor necrosis factor alpha and exacerbated by anti-transforming growth factor beta antibodies. Infect Immun 71:4850–4856PubMedCrossRefGoogle Scholar
  104. Liu X, Seeberger PH (2004) A Suzuki-Miyaura coupling mediated deprotection as key to the synthesis of a fully lipidated malarial GPI disaccharide. Chem Commun (Camb) 1708–1709Google Scholar
  105. Looareesuwan S, Sjostrom L, Krudsood S, Wilairatana P, Porter RS, Hills F, Warrell DA (1999) Polyclonal anti-tumor necrosis factor-alpha Fab used as an ancillary treatment for severe malaria. Am J Trop Med Hyg 61:26–33PubMedGoogle Scholar
  106. Lu J, Jayaprakash KN, Schlueter U, Fraser-Reid B (2004) Synthesis of a malaria candidate glycosylphosphatidylinositol (GPI) structure: a strategy for fully inositol acylated and phosphorylated GPIs. J Am Chem Soc 126:7540–7547PubMedCrossRefGoogle Scholar
  107. Maeno Y, Perlmann P, Perlmann H, Kusuhara Y, Taniguchi K, Nakabayashi T, Win K, Looareesuwan S, Aikawa M (2000) IgE deposition in brain microvessels and on parasitized erythrocytes from cerebral malaria patients. Am J Trop Med Hyg 63:128–132PubMedGoogle Scholar
  108. Maitland K, Marsh K (2004) Pathophysiology of severe malaria in children. Acta Trop 90:131–140PubMedCrossRefGoogle Scholar
  109. Marsh K, Snow RW(1997) Host-parasite interaction and morbidity in malaria endemic areas. Philos Trans R Soc Lond B Biol Sci 352:1385–94PubMedCrossRefGoogle Scholar
  110. Martinez AP, Margos G, Barker G, Sinden RE (2000) The roles of the glycosylphosphatidylinositol anchor on the production and immunogenicity of recombinant ookinete surface antigen Pbs21 of Plasmodium berghei when prepared in a baculovirus expression system. Parasite Immunol 22:493–500PubMedCrossRefGoogle Scholar
  111. McGregor IA, Gilles HM, Walters JH, Davies AH, Pearson FA (1956) Effects of heavy and repeated malarial infections on Gambian infants and children: effects of erythrocytic parasitization. Br Med J 4994:686–692Google Scholar
  112. McGuire W, Hill AV, Allsopp CE, Greenwood BM, Kwiatkowski D (1994) Variation in the TNF-alpha promoter region associated with susceptibility to cerebral malaria. Nature 371:508–510PubMedCrossRefGoogle Scholar
  113. Menendez C, Fleming AF, Alonso PL (2000) Malaria-related anaemia. Parasitol Today 16:469–476PubMedCrossRefGoogle Scholar
  114. Miller MJ (1958) Observations of the natural history of malaria in the semi-resistant west African. Trans R Soc Trop Med Hyg 52:152–168PubMedCrossRefGoogle Scholar
  115. Missinou MA, Lell B, Kremsner PG (2003) Uncommon asymptomatic Plasmodium falciparum infections in Gabonese children. Clin Infect Dis 36:1198–1202PubMedCrossRefGoogle Scholar
  116. Molano A, Park SH, Chiu YH, Nosseir S, Bendelac A, Tsuji M (2000) Cutting edge: the IgG response to the circumsporozoite protein is MHC class II-dependent and CD1d-independent: exploring the role of GPIs in NK T cell activation and antimalarial responses. J Immunol 164:5005–5009PubMedGoogle Scholar
  117. Molineaux L, Trauble M, Collins WE, Jeffery GM, Dietz K (2002) Malaria therapy reinoculation data suggest individual variation of an innate immune response and independent acquisition of antiparasitic and antitoxic immunities. Trans R Soc Trop Med Hyg 96:205–209PubMedCrossRefGoogle Scholar
  118. Moran P, Caras IW (1994) Requirements for glycosylphosphatidylinositol attachment are similar but not identical in mammalian cells and parasitic protozoa. J Cell Biol 125:333–343PubMedCrossRefGoogle Scholar
  119. Mordmuller B, Turrini F, Long H, Kremsner PG, Arese P (1998) Neutrophils and monocytes from subjects with the Mediterranean G6PD variant: effect of Plasmodium falciparum hemozoin on G6PD activity, oxidative burst and cytokine production. Eur Cytokine Netw 9:239–245PubMedGoogle Scholar
  120. Muniz-Junqueira MI, dos Santos-Neto LL, Tosta CE (2001) Influence of tumor necrosis factor-alpha on the ability of monocytes and lymphocytes to destroy intraerythrocytic Plasmodium falciparum in vitro. Cell Immunol 208:73–79PubMedCrossRefGoogle Scholar
  121. Nacher M (2002) Worms and malaria: noisy nuisances and silent benefits. Parasite Immunol 24:391–393PubMedCrossRefGoogle Scholar
  122. Nacher M(2005) Comment on: Severe malaria attack is associated with high prevalence of Ascaris lumbricoides infection among children in rural Senegal. Trans R Soc Trop Med Hyg 99:161–163Google Scholar
  123. Naik RS, Branch OH, Woods AS, Vijaykumar M, Perkins DJ, Nahlen BL, Lal AA, Cotter RJ, Costello CE, Ockenhouse CF, Davidson EA, Gowda DC (2000a) Glycosylphosphatidylinositol anchors of Plasmodium falciparum: molecular characterization and naturally elicited antibody response that may provide immunity to malaria pathogenesis. J Exp Med 192:1563–1576PubMedCrossRefGoogle Scholar
  124. Naik RS, Davidson EA, Gowda DC (2000b) Developmental stage-specific biosynthesis of glycosylphosphatidylinositol anchors in intraerythrocytic Plasmodium falciparum and its inhibition in a novel manner by mannosamine. J Biol Chem 275:24506–24511PubMedCrossRefGoogle Scholar
  125. Naik RS, Krishnegowda G, Gowda CD (2003) Glucosamine inhibits inositol acylation of the glycosylphosphatidylinositol anchors in intraerythrocytic plasmodium falciparum. J Biol Chem 278:2036–2042PubMedCrossRefGoogle Scholar
  126. Njama-Meya D, Kamya MR, Dorsey G (2004) Asymptomatic parasitaemia as a risk factor for symptomatic malaria in a cohort of Ugandan children. Trop Med Int Health 9:862–868PubMedCrossRefGoogle Scholar
  127. Norrby-Teglund A, Lustig R, Kotb M (1997) Differential induction of Th1 versus Th2 cytokines by group A streptococcal toxic shock syndrome isolates. Infect Immun 65:5209–5215PubMedGoogle Scholar
  128. Ockenhouse CF, Tegoshi T, Maeno Y, Benjamin C, Ho M, Kan KE, Thway Y, Win K, Aikawa M, Lobb RR (1992) Human vascular endothelial cell adhesion receptors for Plasmodium falciparum-infected erythrocytes: roles for endothelial leukocyte adhesion molecule 1 and vascular cell adhesion molecule 1. J ExpMed 176:1183–1189CrossRefGoogle Scholar
  129. Oliveira AC, Peixoto JR, de Arruda LB, Campos MA, Gazzinelli RT, Golenbock DT, Akira S, Previato JO, Mendonca-Previato L, Nobrega A, Bellio M(2004) Expression of functional TLR4 confers proinflammatory responsiveness to Trypanosoma cruzi glycoinositolphospholipids and higher resistance to infection with T. cruzi. J Immunol 173:5688–5696PubMedGoogle Scholar
  130. Omer FM, Riley EM (1998) Transforming growth factor beta production is inversely correlated with severity of murine malaria infection. J Exp Med 188:39–48PubMedCrossRefGoogle Scholar
  131. Omer FM, Kurtzhals JA, Riley EM (2000) Maintaining the immunological balance in parasitic infections: a role for TGF-beta? Parasitol Today 16:18–23PubMedCrossRefGoogle Scholar
  132. Omer FM, de Souza JB, Riley EM (2003) Differential induction of TGF-beta regulates proinflammatory cytokine production and determines the outcome of lethal and nonlethal Plasmodium yoelii infections. J Immunol 171:5430–5436PubMedGoogle Scholar
  133. Perkins DJ, Kremsner PG, Weinberg JB (2001) Inverse relationship of plasma prostaglandin E2 and blood mononuclear cell cyclooxygenase-2 with disease severity in children with Plasmodium falciparum malaria. J Infect Dis 183:113–118PubMedCrossRefGoogle Scholar
  134. Perkins DJ, Moore JM, Otieno J, Shi YP, Nahlen BL, Udhayakumar V, Lal AA (2003) In vivo acquisition of hemozoin by placental blood mononuclear cells suppresses PGE2, TNF-alpha, and IL-10. Biochem Biophys Res Commun 311:839–846PubMedCrossRefGoogle Scholar
  135. Perlmann P, Perlmann H, Flyg BW, Hagstedt M, Elghazali G, Worku S, Fernandez V, Rutta AS, Troye-Blomberg M (1997) Immunoglobulin E, a pathogenic factor in Plasmodium falciparum malaria. Infect Immun 65:116–121PubMedGoogle Scholar
  136. Pichyangkul S, Saengkrai P, Webster HK (1994) Plasmodium falciparum pigment induces monocytes to release high levels of tumor necrosis factor-alpha and interleukin-1 beta. Am J Trop Med Hyg 51:430–435PubMedGoogle Scholar
  137. Pichyangkul S, Yongvanitchit K, Kum-arb U, Hemmi H, Akira S, Krieg AM, Heppner DG, Stewart VA, Hasegawa H, Looareesuwan S, Shanks GD, Miller RS (2004) Malaria blood stage parasites activate human plasmacytoid dendritic cells and murine dendritic cells through a Toll-like receptor 9-dependent pathway. J Immunol 172:4926–4933PubMedGoogle Scholar
  138. Playfair JH, Taverne J, Bate CA, de Souza JB (1990) The malaria vaccine: anti-parasite or anti-disease? Immunol Today 11:25–27PubMedCrossRefGoogle Scholar
  139. Playfair JH, Taverne J, Bate CA (1991) Don’t kill the parasite: control the disease. Acta Leiden 60:157–165PubMedGoogle Scholar
  140. Porcelli SA, Modlin RL (1999) The CD1 system: antigen-presenting molecules for T cell recognition of lipids and glycolipids. Annu Rev Immunol 17:297–329PubMedCrossRefGoogle Scholar
  141. Prada J, Malinowski J, Muller S, Bienzle U, Kremsner PG (1995) Hemozoin differentially modulates the production of interleukin 6 and tumor necrosis factor in murine malaria. Eur Cytokine Netw 6:109–112PubMedGoogle Scholar
  142. Procopio DO, Almeida IC, Torrecilhas AC, Cardoso JE, Teyton L, Travassos LR, Bendelac A, Gazzinelli RT (2002) Glycosylphosphatidylinositol-anchored mucin-like glycoproteins from Trypanosoma cruzi bind to CD1d but do not elicit dominant innate or adaptive immune responses via the CD1d/NKT cell pathway. J Immunol 169:3926–3933PubMedGoogle Scholar
  143. Prybylski D, Khaliq A, Fox E, Sarwari AR, Strickland GT (1999) Parasite density and malaria morbidity in the Pakistani Punjab. Am J Trop Med Hyg 61:791–801PubMedGoogle Scholar
  144. Rae C, McQuillan JA, Parekh SB, Bubb WA, Weiser S, Balcar VJ, Hansen AM, Ball HJ, Hunt NH (2004) Brain gene expression, metabolism, and bioenergetics: interrelationships in murine models of cerebral and noncerebral malaria. FASEB J 18:499–510PubMedCrossRefGoogle Scholar
  145. Riley EM (1999) Is T-cell priming required for initiation of pathology in malaria infections? Immunol Today 20:228–233PubMedCrossRefGoogle Scholar
  146. Rogier C, Commenges D, Trape JF (1996) Evidence for an age-dependent pyrogenic threshold of Plasmodium falciparum parasitemia in highly endemic populations. Am J Trop Med Hyg 54:613–619PubMedGoogle Scholar
  147. Romero PJ, Tam JP, Schlesinger D, Clavijo P, Gibson H, Barr PJ, Nussenzweig RS, Nussenzweig V, Zavala F (1988) Multiple T helper cell epitopes of the circumsporozoite protein of Plasmodium berghei. Eur J Immunol 18:1951–1957PubMedCrossRefGoogle Scholar
  148. Romero JF, Eberl G, MacDonald HR, Corradin G (2001) CD1d-restricted NK T cells are dispensable for specific antibody responses and protective immunity against liver stage malaria infection in mice. Parasite Immunol 23:267–269PubMedCrossRefGoogle Scholar
  149. Ropert C, Gazzinelli RT (2000) Signaling of immune system cells by glycosylphosphatidylinositol (GPI) anchor and related structures derived from parasitic protozoa. Curr Opin Microbiol 3:395–403PubMedCrossRefGoogle Scholar
  150. Ropert C, Gazzinelli RT (2004) Regulatory role of Toll-like receptor 2 during infection with Trypanosoma cruzi. J Endotoxin Res 10:425–430PubMedCrossRefGoogle Scholar
  151. Ropert C, Almeida IC, Closel M, Travassos LR, Ferguson MA, Cohen P, Gazzinelli RT (2001) Requirement of mitogen-activated protein kinases and I kappa B phosphorylation for induction of proinflammatory cytokines synthesis by macrophages indicates functional similarity of receptors triggered by glycosylphosphatidylinositol anchors from parasitic protozoa and bacterial lipopolysaccharide. J Immunol 166:3423–3431PubMedGoogle Scholar
  152. Rowe JA, Scragg IG, Kwiatkowski D, Ferguson DJ, Carucci DJ, Newbold CI (1998) Implications of mycoplasma contamination in Plasmodium falciparum cultures and methods for its detection and eradication.Mol Biochem Parasitol 92:177–180PubMedCrossRefGoogle Scholar
  153. Rubenstein M, Mulholland J, Jeffery G, Wolff S (1965) Malaria induced endotoxin tolerance. Proc Soc Exp Biol Med 118:283–287PubMedGoogle Scholar
  154. Rzepczyk CM, Hale K, Woodroffe N, Bobogare A, Csurhes P, Ishii A, Ferrante A (1997) Humoral immune responses of Solomon Islanders to the merozoite surface antigen 2 of Plasmodium falciparum show pronounced skewing towards antibodies of the immunoglobulin G3 subclass. Infect Immun 65:1098–1100PubMedGoogle Scholar
  155. Sanchez-Cantu L, Rode HN, Christou NV (1989) Endotoxin tolerance is associated with reduced secretion of tumor necrosis factor. Arch Surg 124:1432–1435PubMedGoogle Scholar
  156. Santos de Macedo C, Gerold P, Jung N, Azzouz N, Kimmel J, Schwarz RT (2001) Inhibition of glycosyl-phosphatidylinositol biosynthesis in Plasmodium falciparum by C-2 substituted mannose analogues. Eur J Biochem 268:6221–6228PubMedCrossRefGoogle Scholar
  157. Scheiblhofer S, Chen D, Weiss R, Khan F, Mostbock S, Fegeding K, Leitner WW, Thalhamer J, Lyon JA (2001) Removal of the circumsporozoite protein (CSP) glycosylphosphatidylinositol signal sequence from a CSP DNA vaccine enhances induction of CSP-specific Th2 type immune responses and improves protection against malaria infection. Eur J Immunol 31:692–698PubMedCrossRefGoogle Scholar
  158. Schofield L, Hackett F (1993) Signal transduction in host cells by a glycosylphosphatidylinositol toxin of malaria parasites. J Exp Med 177:145–153PubMedCrossRefGoogle Scholar
  159. Schofield L, Vivas L, Hackett F, Gerold P, Schwarz RT, Tachado S (1993) Neutralizing monoclonal antibodies to glycosylphosphatidylinositol, the dominant TNFalpha-inducing toxin of Plasmodium falciparum: prospects for the immunotherapy of severe malaria. Ann Trop Med Parasitol 87:617–626PubMedGoogle Scholar
  160. Schofield L, Novakovic S, Gerold P, Schwarz RT, McConville MJ, Tachado SD (1996) Glycosylphosphatidylinositol toxin of Plasmodium up-regulates intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin expression in vascular endothelial cells and increases leukocyte and parasite cytoadherence via tyrosine kinase-dependent signal transduction. J Immunol 156:1886–1896PubMedGoogle Scholar
  161. Schofield L, McConville MJ, Hansen D, Campbell AS, Fraser-Reid B, Grusby MJ, Tachado SD (1999) CD1d-restricted immunoglobulin G formation to GPI-anchored antigens mediated by NKT cells. Science 283:225–229PubMedCrossRefGoogle Scholar
  162. Schofield L, Hewitt MC, Evans K, Siomos MA, Seeberger PH (2002) Synthetic GPI as a candidate anti-toxic vaccine in a model of malaria. Nature 418:785–789PubMedCrossRefGoogle Scholar
  163. Schwarzer E, Kuhn H, Valente E, Arese P (2003) Malaria-parasitized erythrocytes and hemozoin nonenzymatically generate large amounts of hydroxy fatty acids that inhibit monocyte functions. Blood 101:722–728PubMedCrossRefGoogle Scholar
  164. Scragg IG, Hensmann M, Bate CA, Kwiatkowski D (1999) Early cytokine induction by Plasmodium falciparum is not a classical endotoxin-like process. Eur J Immunol 29:2636–2644PubMedCrossRefGoogle Scholar
  165. Seeberger PH, Soucy RL, Kwon YU, Snyder DA, Kanemitsu T (2004) A convergent, versatile route to two synthetic conjugate anti-toxin malaria vaccines. Chem Commun (Camb ) 1706–1707Google Scholar
  166. Serirom S, Raharjo WH, Chotivanich K, Loareesuwan S, Kubes P, Ho M (2003) Anti-adhesive effect of nitric oxide on Plasmodium falciparum cytoadherence under flow. Am J Pathol 162:1651–1660PubMedGoogle Scholar
  167. Shams-Eldin H, Azzouz N, Kedees MH, Orlean P, Kinoshita T, Schwarz RT (2002) The GPI1 homologue from Plasmodium falciparum complements a Saccharomyces cerevisiae GPI1 anchoring mutant. Mol Biochem Parasitol 120:73–81PubMedCrossRefGoogle Scholar
  168. Sherry BA, Alava G, Tracey KJ, Martiney J, Cerami A, Slater AF (1995) Malaria-specific metabolite hemozoin mediates the release of several potent endogenous pyrogens (TNF,MIP-1 alpha, and MIP-1 beta) in vitro, and altered thermoregulation in vivo. J Inflamm 45:85–96PubMedGoogle Scholar
  169. Sieling PA, Chatterjee D, Porcelli SA, Prigozy TI, Mazzaccaro RJ, Soriano T, Bloom BR, Brenner MB, Kronenberg M, Brennan PJ,. (1995) CD1-restricted T cell recognition of microbial lipoglycan antigens. Science 269:227–230PubMedCrossRefGoogle Scholar
  170. Singh RP, Kashiwamura S, Rao P, Okamura H, Mukherjee A, Chauhan VS (2002) The role of IL-18 in blood-stage immunity against murine malaria Plasmodium yoelii 265 and Plasmodium berghei ANKA. J Immunol 168:4674–4681PubMedGoogle Scholar
  171. Sinton JA (1938) Immunity or tolerance in malarial infections. Proc R Soc Med 31:1298–1302PubMedGoogle Scholar
  172. Smith T, Genton B, Baea K, Gibson N, Taime J, Narara A, Al Yaman F, Beck HP, Hii J, Alpers M (1994) Relationships between Plasmodium falciparum infection and morbidity in a highly endemic area. Parasitology 109:539–549PubMedGoogle Scholar
  173. Smith T, Felger I, Tanner M, Beck HP (1999) Premunition in Plasmodium falciparum infection: insights from the epidemiology of multiple infections. Trans R Soc Trop Med Hyg 93:S59–S64CrossRefGoogle Scholar
  174. Smith TK, Sharma DK, Crossman A, Dix A, Brimacombe JS, Ferguson MA (1997) Parasite and mammalian GPI biosynthetic pathways can be distinguished using synthetic substrate analogues. EMBO J 16:6667–6675PubMedCrossRefGoogle Scholar
  175. Smith TK, Sharma DK, Crossman A, Brimacombe JS, Ferguson MA (1999) Selective inhibitors of the glycosylphosphatidylinositol biosynthetic pathway of Trypanosoma brucei. EMBO J 18:5922–5930PubMedCrossRefGoogle Scholar
  176. Smith TK, Crossman A, Borissow CN, Paterson MJ, Dix A, Brimacombe JS, Ferguson MA (2001) Specificity of GlcNAc-PI de-N-acetylase of GPI biosynthesis and synthesis of parasite-specific suicide substrate inhibitors. EMBO J 20:3322–3332PubMedCrossRefGoogle Scholar
  177. Smith TK, Gerold P, Crossman A, Paterson MJ, Borissow CN, Brimacombe JS, Ferguson MA, Schwarz RT (2002) Substrate specificity of the Plasmodium falciparum glycosylphosphatidylinositol biosynthetic pathway and inhibition by species-specific suicide substrates. Biochemistry 41:12395–12406PubMedCrossRefGoogle Scholar
  178. Smith TK, Crossman A, Brimacombe JS, Ferguson MA (2004) Chemical validation of GPI biosynthesis as a drug target against African sleeping sickness. EMBO J 23:4701–4708PubMedCrossRefGoogle Scholar
  179. Snow RW, Marsh K (1998) New insights into the epidemiology of malaria relevant for disease control. Br Med Bull 54:293–309PubMedGoogle Scholar
  180. Sowunmi A (1995) Body temperature and malaria parasitaemia in rural African children. East Afr Med J 72:427–430PubMedGoogle Scholar
  181. Stevenson MM, Riley EM (2004) Innate immunity to malaria. Nat Rev Immunol 4:169–180PubMedCrossRefGoogle Scholar
  182. Suguitan AL, Jr., Gowda DC, Fouda G, Thuita L, Zhou A, Djokam R, Metenou S, Leke RG, Taylor DW (2004) Lack of an association between antibodies to Plasmodium falciparum glycosylphosphatidylinositols and malaria-associated placental changes in Cameroonian women with preterm and full-term deliveries. Infect Immun 72:5267–5273PubMedCrossRefGoogle Scholar
  183. Sutterlin C, Horvath A, Gerold P, Schwarz RT, Wang Y, Dreyfuss M, Riezman H (1997) Identification of a species-specific inhibitor of glycosylphosphatidylinositol synthesis. EMBO J 16:6374–6383PubMedCrossRefGoogle Scholar
  184. Tachado SD, Gerold P, McConville MJ, Baldwin T, Quilici D, Schwarz RT, Schofield L (1996) Glycosylphosphatidylinositol toxin of Plasmodium induces nitric oxide synthase expression in macrophages and vascular endothelial cells by a protein tyrosine kinase-dependent and protein kinase C-dependent signaling pathway. J Immunol 156:1897–1907PubMedGoogle Scholar
  185. Tachado SD, Gerold P, Schwarz R, Novakovic S, McConville M, Schofield L (1997) Signal transduction in macrophages by glycosylphosphatidylinositols of Plasmodium, Trypanosoma, and Leishmania: activation of protein tyrosine kinases and protein kinase C by inositolglycan and diacylglycerol moieties. Proc Natl Acad Sci U S A 94:4022–4027PubMedCrossRefGoogle Scholar
  186. Takeda K, Takeuchi O, Akira S (2002) Recognition of lipopeptides by Toll-like receptors. J Endotoxin Res 8:459–463PubMedCrossRefGoogle Scholar
  187. Taramelli D, Basilico N, Pagani E, Grande R, Monti D, Ghione M, Olliaro P (1995) The heme moiety of malaria pigment (beta-hematin) mediates the inhibition of nitric oxide and tumor necrosis factor-alpha production by lipopolysaccharide-stimulated macrophages. Exp Parasitol 81:501–511PubMedCrossRefGoogle Scholar
  188. Taramelli D, Recalcati S, Basilico N, Olliaro P, Cairo G (2000) Macrophage preconditioning with synthetic malaria pigment reduces cytokine production via heme iron-dependent oxidative stress. Lab Invest 80:1781–1788PubMedCrossRefGoogle Scholar
  189. Taron BW, Colussi PA, Wiedman JM, Orlean P, Taron CH (2004) Human Smp3p adds a fourth mannose to yeast and human glycosylphosphatidylinositol precursors in vivo. J Biol Chem 279:36083–36092PubMedCrossRefGoogle Scholar
  190. Taylor RR, Allen SJ, Greenwood BM, Riley EM (1998) IgG3 antibodies to Plasmodium falciparum merozoite surface protein 2 (MSP2): increasing prevalence with age and association with clinical immunity to malaria. Am J Trop Med Hyg 58:406–413PubMedGoogle Scholar
  191. Turrini F, Giribaldi G, Valente E, Arese P (1997) Mycoplasma contamination of Plasmodium cultures—a case of parasite parasitism. Parasitol Today 13:367–368PubMedCrossRefGoogle Scholar
  192. Vadas P, Taylor TE, Chimsuku L, Goldring D, Stefanski E, Pruzanski W, Molyneux ME (1993) Increased serum phospholipase A2 activity in Malawian children with falciparum malaria. Am J Trop Med Hyg 49:455–9PubMedGoogle Scholar
  193. van der Poll T., Coyle SM, Moldawer LL, Lowry SF (1996) Changes in endotoxin-induced cytokine production by whole blood after in vivo exposure of normal humans to endotoxin. J Infect Dis 174:1356–1360PubMedGoogle Scholar
  194. van der Poll T, van Deventer SJH (1999) Endotoxemia in healthy subjects as a human model of inflammation. 1st:335–357Google Scholar
  195. van Hensbroek MB, Palmer A, Onyiorah E, Schneider G, Jaffar S, Dolan G, Memming H, Frenkel J, Enwere G, Bennett S, Kwiatkowski D, Greenwood B (1996) The effect of a monoclonal antibody to tumor necrosis factor on survival from childhood cerebral malaria. J Infect Dis 174:1091–1097PubMedGoogle Scholar
  196. Vijaykumar M, Naik RS, Gowda DC (2001) Plasmodium falciparum Glycosylphosphatidylinositol-induced TNF-alpha Secretion by Macrophages Is Mediated without Membrane Insertion or Endocytosis. J Biol Chem 276:6909–6912PubMedCrossRefGoogle Scholar
  197. Wahlstrom K, Bellingham J, Rodriguez JL, West MA (1999) Inhibitory kappaBalpha control of nuclear factor-kappaB is dysregulated in endotoxin tolerant macrophages. Shock 11:242–247PubMedCrossRefGoogle Scholar
  198. Wattavidanage J, Carter R, Perera KL, Munasingha A, Bandara S, McGuinness D, Wickramasinghe AR, Alles HK, Mendis KN, Premawansa S (1999) TNFalpha*2 marks high risk of severe disease during Plasmodium falciparum malaria and other infections in Sri Lankans. Clin Exp Immunol 115:350–355PubMedCrossRefGoogle Scholar
  199. West MA, Heagy W (2002) Endotoxin tolerance: A review. Crit Care Med 30:S64–S73CrossRefGoogle Scholar
  200. Wood P, Elliott T (1998) Glycan-regulated antigen processing of a protein in the endoplasmic reticulum can uncover cryptic cytotoxic T cell epitopes. J Exp Med 188:773–778PubMedCrossRefGoogle Scholar
  201. Xiao L, Patterson PS, Yang C, Lal AA (1999) Role of eicosanoids in the pathogenesis of murine cerebral malaria. Am J Trop Med Hyg 60:668–673PubMedGoogle Scholar
  202. Zhu J, Krishnegowda G, Gowda DC (2004) Induction of proinflammatory responses in macrophages by the glycosylphosphatidylinositols (GPIs) of Plasmodium falciparum: The requirement of ERK, p38, JNK and NF-kappa B pathways for the expression of proinflammatory cytokines and nitric oxide. J Biol Chem Dec 15:Epub ahead of printGoogle Scholar
  203. Ziegler-Heitbrock HW, Wedel A, Schraut W, Strobel M, Wendelgass P, Sternsdorf T, Bauerle PA, Haas JG, Riethmuller G (1994) Tolerance to lipopolysaccharide involves mobilization of nuclear factor kappa B with predominance of p50 homodimers. J Biol Chem 269:17001–17004PubMedGoogle Scholar
  204. Zingarelli B, Halushka PV, Caputi AP, Cook JA (1995) Increased nitric oxide synthesis during the development of endotoxin tolerance. Shock 3:102–108PubMedGoogle Scholar
  205. Zingarelli B, Hake PW, Cook JA (2002) Inducible nitric oxide synthase is not required in the development of endotoxin tolerance in mice. Shock 17:478–484PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • C. S. Boutlis
    • 1
    • 2
  • E. M. Riley
    • 3
  • N. M. Anstey
    • 1
    • 2
  • J. B. de Souza
    • 3
    • 4
  1. 1.International Health Program, Infectious Diseases DivisionMenzies School of Health ResearchCasuarinaAustralia
  2. 2.Charles Darwin UniversityDarwinAustralia
  3. 3.Department of Infectious and Tropical DiseasesLondon School of Hygiene and Tropical MedicineLondonUK
  4. 4.Department of Immunology and Molecular PathologyWindeyer Institute of Medical ResearchLondonUK

Personalised recommendations