Innate Host Defense of Human Vaginal and CervicalMucosae

  • A. M. Cole
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 306)


Host defense responses of the human female genital tract mucosa to pathogenic microbes and viruses are mediated in part by the release of antimicrobial substances into the overlying mucosal fluid. While host defense has long been considered a prominent function of vaginal and cervical mucosae, evidence that cationic antimicrobial peptides and proteins have fundamental roles in the innate host defense of this tissue has only recently become available. This chapter explores elements of the physical and chemical defense barriers of the cervicovaginal mucosa, which protect against infections of the lower genital tract. Cationic antimicrobial and antiviral polypeptide components of cervicovaginal fluid are discussed in detail, with special emphasis placed on the defensin family of peptides as well as polypeptides that are active against viruses such as HIV-1. The reader should be cognizant that each polypeptide by itself does not provide complete protection of the genital tract. On the contrary, the abundance and multiplicity of antimicrobial peptides and proteins suggest protection of the cervicovaginal mucosa may be best realized from the aggregate effector molecules.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abuja PM, Zenz A, Trabi M, Craik DJ, Lohner K (2004) The cyclic antimicrobial peptide RTD-1 induces stabilized lipid-peptide domains more efficiently than its open-chain analogue. FEBS Lett 566:301–306PubMedGoogle Scholar
  2. Agerberth B, Gunne H, Odeberg J, Kogner P, Boman HG, Gudmundsson GH (1995) FALL-39, a putative human peptide antibiotic, is cysteine-free and expressed in bone marrow and testis. Proc Natl Acad Sci U S A 92:195–199PubMedGoogle Scholar
  3. Agerberth B, Charo J, Werr J, Olsson B, Idali F, Lindbom L, Kiessling R, Jornvall H, Wigzell H, Gudmundsson GH (2000) The human antimicrobial and chemotactic peptides LL-37 and alpha-defensins are expressed by specific lymphocyte and monocyte populations. Blood 96:3086–3093PubMedGoogle Scholar
  4. Agnew KJ, Hillier SL (1995) The effect of treatment regimens for vaginitis and cervicitis on vaginal colonization by lactobacilli. Sex Transm Dis 22:269–273PubMedGoogle Scholar
  5. Aho HJ, Grenman R, Sipila J, Peuravuori H, Hartikainen J, Nevalainen TJ (1997) Group II phospholipase A2 in nasal fluid, mucosa and paranasal sinuses. Acta Otolaryngol (Stockh) 117:860–863Google Scholar
  6. Alcouloumre MS, Ghannoum MA, Ibrahim AS, Selsted ME, Edwards JEJ (1993) Fungicidal properties of defensin NP-1 and activity against Cryptococcus neoformans in vitro. Antimicrob Agents Chemother 37:2628–2632PubMedGoogle Scholar
  7. Aley SB, Zimmerman M, Hetsko M, Selsted ME, Gillin FD (1994) Killing of Giardia lamblia by cryptdins and cationic neutrophil peptides. Infect Immun 62:5397–5403PubMedGoogle Scholar
  8. Andersen JH, Osbakk SA, Vorland LH, Traavik T, Gutteberg TJ (2001) Lactoferrin and cyclic lactoferricin inhibit the entry of human cytomegalovirus into human fibroblasts. Antiviral Res 51:141–149PubMedGoogle Scholar
  9. Arnold RR, Russell JE, Champion WJ, Brewer M, Gauthier JJ (1982) Bactericidal activity of human lactoferrin: differentiation from the stasis of iron deprivation. Infect Immun 35:792–799PubMedGoogle Scholar
  10. Aroutcheva A, Gariti D, Simon M, Shott S, Faro J, Simoes JA, Gurguis A, Faro S (2001) Defense factors of vaginal lactobacilli. Am J Obstet Gynecol 185:375–379PubMedGoogle Scholar
  11. Ayabe T, Satchell DP, Wilson CL, Parks WC, Selsted ME, Ouellette AJ (2000) Secretion of microbicidal α-defensins by intestinal Paneth cells in response to bacteria. Nat Immunol 1:113–118PubMedGoogle Scholar
  12. Bals R (2000) Epithelial antimicrobial peptides in host defense against infection. Respir Res 1:141–150PubMedGoogle Scholar
  13. Bals R, Wang X, Zasloff M, Wilson JM (1998) The peptide antibiotic LL-37/hCAP-18 is expressed in epithelia of the human lung where it has broad antimicrobial activity at the airway surface. Proc Natl Acad Sci U S A 95:9541–9546PubMedGoogle Scholar
  14. Balu RB, Savitz DA, Ananth CV, Hartmann KE, Miller WC, Thorp JM, Heine RP (2002) Bacterial vaginosis and vaginal fluid defensins during pregnancy. Am J Obstet Gynecol 187:1267–1271PubMedGoogle Scholar
  15. Balu RB, Savitz DA, Ananth CV, Hartmann KE, Miller WC, Thorp JM, Heine RP (2003) Bacterial vaginosis, vaginal fluid neutrophil defensins, and preterm birth. Obstet Gynecol 101:862–868PubMedGoogle Scholar
  16. Barousse MM, Steele C, Dunlap K, Espinosa T, Boikov D, Sobel JD, Fidel PL Jr (2001) Growth inhibition of Candida albicans by human vaginal epithelial cells. J Infect Dis 184:1489–1493PubMedGoogle Scholar
  17. Becker MN, Diamond G, Verghese MW, Randell SH (2000) CD14-dependent lipopolysaccharide-induced beta-defensin-2 expression in human tracheobronchial epithelium. J Biol Chem 275:29731–29736PubMedGoogle Scholar
  18. Bellamy W, Takase M, Wakabayashi H, Kawase K, Tomita M (1992) Antibacterial spectrum of lactoferricin B, a potent bactericidal peptide derived from the Nterminal region of bovine lactoferrin. J Appl Bacteriol 73:472–479PubMedGoogle Scholar
  19. Bensch KW, Raida M, Magert HJ, Schulz-Knappe P, Forssmann WG (1995) hBD-1: a novel beta-defensin from human plasma. FEBS Lett 368:331–335PubMedGoogle Scholar
  20. Bevins CL (2004) The Paneth cell and the innate immune response. Curr Opin Gastroenterol 20:572–580PubMedGoogle Scholar
  21. Biragyn A, Ruffini PA, Leifer CA, Klyushnenkova E, Shakhov A, Chertov O, Shirakawa AK, Farber JM, Segal DM, Oppenheim JJ, Kwak LW (2002) Toll-like receptor 4-dependent activation of dendritic cells by beta-defensin 2. Science 298:1025–1029PubMedGoogle Scholar
  22. Birchler T, Seibl R, Buchner K, Loeliger S, Seger R, Hossle JP, Aguzzi A, Lauener RP (2001) Human Toll-like receptor 2 mediates induction of the antimicrobial peptide human beta-defensin 2 in response to bacterial lipoprotein. Eur J Immunol 31:3131–3137PubMedGoogle Scholar
  23. Brandtzaeg P, Gabrielsen TO, Dale I, Muller F, Steinbakk M, Fagerhol MK (1995) The leucocyte protein L1 (calprotectin): a putative nonspecific defence factor at epithelial surfaces. Adv Exp Med Biol 371A:201–206PubMedGoogle Scholar
  24. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A (2004) Neutrophil extracellular traps kill bacteria. Science 303:1532–1535PubMedGoogle Scholar
  25. Brown D Jr (2004) Clinical variability of bacterial vaginosis and trichomoniasis. J Reprod Med 49:781–786PubMedGoogle Scholar
  26. Brunham RC, Rey-Ladino J (2005) Immunology of Chlamydia infection: implications for a Chlamydia trachomatis vaccine. Nat Rev Immunol 5:149–161PubMedGoogle Scholar
  27. Bullen JJ, Armstrong JA (1979) The role of lactoferrin in the bactericidal function of polymorphonuclear leucocytes. Immunology 36:781–791PubMedGoogle Scholar
  28. Cates W Jr (1999) Estimates of the incidence and prevalence of sexually transmitted diseases in the United States. American Social Health Association Panel. Sex Transm Dis 26: S2–S7PubMedGoogle Scholar
  29. Chang JH, Ryang YS, Morio T, Lee SK, Chang EJ (2004) Trichomonas vaginalis inhibits proinflammatory cytokine production in macrophages by suppressing NF-kappaB activation. Mol Cells 18:177–185PubMedGoogle Scholar
  30. Chang TL, Francois F, Mosoian A, Klotman ME (2003) CAF-mediated human immunodeficiency virus (HIV) type 1 transcriptional inhibition is distinct from alpha-defensin-1 HIV inhibition. J Virol 77:6777–6784PubMedGoogle Scholar
  31. Chang TL, Vargas J Jr, DelPortillo A, Klotman ME (2005) Dual role of alpha-defensin-1 in anti-HIV-1 innate immunity. J Clin Invest 115:765–773PubMedGoogle Scholar
  32. Chapple DS, Joannou CL, Mason DJ, Shergill JK, Odell EW, Gant V, Evans RW (1998) A helical region on human lactoferrin. Its role in antibacterial pathogenesis. Adv Exp Med Biol 443:215–220PubMedGoogle Scholar
  33. Chen FY, Lee MT, Huang HW (2003) Evidence for membrane thinning effect as the mechanism for peptide-induced pore formation. Biophys J 84:3751–3758PubMedGoogle Scholar
  34. Cherpes TL, Meyn LA, Krohn MA, Lurie JG, Hillier SL (2003) Association between acquisition of herpes simplex virus type 2 in women and bacterial vaginosis. Clin Infect Dis 37:319–325PubMedGoogle Scholar
  35. Chimura T, Hirayama T, Takase M (1993) Lysozyme in cervicalmucus of patients with chorioamnionitis. Jpn J Antibiot 46:726–729PubMedGoogle Scholar
  36. Cibley LJ, Cibley LJ (1991) Cytolytic vaginosis. Am J Obstet Gynecol 165:1245–1249PubMedGoogle Scholar
  37. Clohessy PA, Golden BE (1996) Themechanism of calprotectin’s candidastatic activity appears to involve zinc chelation. Biochem Soc Trans 24:309SPubMedGoogle Scholar
  38. Cole AM, Dewan P, Ganz T (1999) Innate antimicrobial activity of nasal secretions. Infect Immun 67:3267–3275PubMedGoogle Scholar
  39. Cole AM, Hong T, Boo LM, Nguyen T, Zhao C, Bristol G, Zack JA, Waring AJ, Yang OO, Lehrer RI (2002) Retrocyclin: a primate peptide that protects cells from infection by T-and M-tropic strains of HIV-1. Proc Natl Acad Sci U S A 99:1813–1818PubMedGoogle Scholar
  40. Cowland JB, Johnsen AH, Borregaard N (1995) hCAP-18, a cathelin/pro-bactenecinlike protein of human neutrophil specific granules. FEBS Lett 368:173–176PubMedGoogle Scholar
  41. Daher KA, Selsted ME, Lehrer RI (1986) Direct inactivation of viruses by human granulocyte defensins. J Virol 60:1068–1074PubMedGoogle Scholar
  42. Diamond G, Zasloff M, Eck H, Brasseur M, Maloy WL, Bevins CL (1991) Tracheal antimicrobial peptide, a cysteine-rich peptide from mammalian tracheal mucosa: peptide isolation and cloning of a cDNA. Proc Natl Acad Sci U S A 88:3952–3956PubMedGoogle Scholar
  43. Draper DL, Landers DV, Krohn MA, Hillier SL, Wiesenfeld HC, Heine RP (2000) Levels of vaginal secretory leukocyte protease inhibitor are decreased in women with lower reproductive tract infections. Am J Obstet Gynecol 183:1243–1248PubMedGoogle Scholar
  44. Duits LA, Ravensbergen B, Rademaker M, Hiemstra PS, Nibbering PH (2002) Expression of beta-defensin 1 and 2 mRNA by human monocytes, macrophages and dendritic cells. Immunology 106:517–525PubMedGoogle Scholar
  45. Duits LA, Nibbering PH, van Strijen E, Vos JB, Mannesse-Lazeroms SP, van Sterkenburg MA, Hiemstra PS (2003) Rhinovirus increases human beta-defensin-2 and-3 mRNA expression in cultured bronchial epithelial cells. FEMS Immunol Med Microbiol 38:59–64PubMedGoogle Scholar
  46. Edwards JL, Apicella MA (2004) The molecular mechanisms used by Neisseria gonorrhoeae to initiate infection differ between men and women. Clin Microbiol Rev 17:965–981PubMedGoogle Scholar
  47. Edwards L (2004) The diagnosis and treatment of infectious vaginitis. Dermatol Ther 17:102–110PubMedGoogle Scholar
  48. Ellison RT3, Giehl TJ (1991) Killing of Gram-negative bacteria by lactoferrin and lysozyme. J Clin Invest 88:1080–1091PubMedGoogle Scholar
  49. Faurschou M, Kamp S, Cowland JB, Udby L, Johnsen AH, Calafat J, Winther H, Borregaard N (2005) Prodefensins are matrix proteins of specific granules in human neutrophils. J Leukoc Biol 78:785–793PubMedGoogle Scholar
  50. Fidel PL Jr (2004) History and new insights into host defense against vaginal candidiasis. Trends Microbiol 12:220–227PubMedGoogle Scholar
  51. Fidel PL Jr (2005) Immunity in vaginal candidiasis. Curr Opin Infect Dis 18:107–111PubMedGoogle Scholar
  52. Fidel PL Jr, Barousse M, Espinosa T, Ficarra M, Sturtevant J, Martin DH, Quayle AJ, Dunlap K (2004) An intravaginal live Candida challenge in humans leads to new hypotheses for the immunopathogenesis of vulvovaginal candidiasis. Infect Immun 72:2939–2946PubMedGoogle Scholar
  53. Fleming A (1922) On a remarkable bacteriolytic element found in tissues and secretions. Proc R Soc Lond [Biol] 93:306–317Google Scholar
  54. Frohm NM, Sandstedt B, Sorensen O, Weber G, Borregaard N, Stahle-Backdahl M (1999) The human cationic antimicrobial protein (hCAP18), a peptide antibiotic, is widely expressed in human squamous epithelia and colocalizes with interleukin-6. Infect Immun 67:2561–2566Google Scholar
  55. Ganz T (1999) Defensins and host defense. Science 286:420–421PubMedGoogle Scholar
  56. Ganz T (2001) Defensins in the urinary tract and other tissues. J Infect Dis 183[Suppl 1]:S41–S42PubMedGoogle Scholar
  57. Ganz T (2005) Defensins and other antimicrobial peptides: a historical perspective and an update. Comb Chem High Throughput Screen 8:209–217PubMedGoogle Scholar
  58. Ganz T, Lehrer RI (1994) Defensins. Curr Opin Immunol 6:584–589PubMedGoogle Scholar
  59. Ganz T, Lehrer RI (1997) Antimicrobial peptides of leukocytes. Curr Opin Hematol 4:53–58PubMedGoogle Scholar
  60. Ganz T, Selsted ME, Szklarek D, Harwig SS, Daher K, Bainton DF, Lehrer RI (1985) Defensins. Natural peptide antibiotics of human neutrophils. J Clin Invest 76:1427–1435PubMedGoogle Scholar
  61. Gazit E, Miller IR, Biggin PC, Sansom MS, Shai Y (1996) Structure and orientation of the mammalian antibacterial peptide cecropin P1 within phospholipid membranes. J Mol Biol 258:860–870PubMedGoogle Scholar
  62. Ghosh D, Porter E, Shen B, Lee SK, Wilk D, Drazba J, Yadav SP, Crabb JW, Ganz T, Bevins CL (2002) Paneth cell trypsin is the processing enzyme for human defensin-5. Nat Immunol 3:583–590PubMedGoogle Scholar
  63. Ghosh SK, Zhao J, Philogene MC, Alzaharani A, Rane S, Banerjee A (2004) Pathogenic consequences of Neisseria gonorrhoeae pilin glycan variation. Microbes Infect 6:693–701PubMedGoogle Scholar
  64. Grouard G, Clark EA (1997) Role of dendritic and follicular dendritic cells in HIV infection and pathogenesis. Curr Opin Immunol 9:563–567PubMedGoogle Scholar
  65. Harder J, Bartels J, Christophers E, Schroeder J-M (1997) A peptide antibiotic from human skin. Nature 387:861–862PubMedGoogle Scholar
  66. Harder J, Bartels J, Christophers E, Schroder JM (2001) Isolation and characterization of human beta-defensin-3, a novel human inducible peptide antibiotic. J Biol Chem 276:5707–5713PubMedGoogle Scholar
  67. Harmsen MC, Swart PJ, de Bethune MP, Pauwels R, De Clercq E, The TH, Meijer DK (1995) Antiviral effects of plasma and milk proteins: lactoferrin shows potent activity against both human immunodeficiency virus and human cytomegalovirus replication in vitro. J Infect Dis 172:380–388PubMedGoogle Scholar
  68. Harwig SS, Park AS, Lehrer RI (1992) Characterization of defensin precursors in mature human neutrophils. Blood 79:1532–1537PubMedGoogle Scholar
  69. Hasegawa K, Motsuchi W, Tanaka S, Dosako S (1994) Inhibition with lactoferrin of in vitro infection with human herpes virus. Jpn J Med Sci Biol 47:73–85PubMedGoogle Scholar
  70. Hashemi FB, Mollenhauer J, Madsen LD, Sha BE, Nacken W, Moyer MB, Sorg C, Spear GT (2001) Myeloid-related protein (MRP)-8 from cervico-vaginal secretions activates HIV replication. AIDS 15:441–449PubMedGoogle Scholar
  71. Hein M, Valore EV, Helmig RB, Uldbjerg N, Ganz T (2002) Antimicrobial factors in the cervical mucus plug. Am J Obstet Gynecol 187:137–144PubMedGoogle Scholar
  72. Helmig R, Uldbjerg N, Ohlsson K (1995) Secretory leukocyte protease inhibitor in the cervical mucus and in the fetal membranes. Eur J Obstet Gynecol Reprod Biol 59:95–101PubMedGoogle Scholar
  73. Hertz CJ, Wu Q, Porter EM, Zhang YJ, Weismuller KH, Godowski PJ, Ganz T, Randell SH, Modlin RL (2003) Activation of Toll-like receptor 2 on human tracheobronchial epithelial cells induces the antimicrobial peptide human beta defensin-2. J Immunol 171:6820–6826PubMedGoogle Scholar
  74. Hiemstra PS, Maassen RJ, Stolk J, Heinzel-Wieland R, Steffens GJ, Dijkman JH (1996) Antibacterial activity of antileukoprotease. Infect Immun 64:4520–4524PubMedGoogle Scholar
  75. Hillier SL (1999) Normal vaginal flora. In: Holmes KK et al (eds) Sexually transmitted diseases. McGraw-Hill, New York, pp 191–204Google Scholar
  76. Hirsch JG (1958) Bactericidal action of histone. J Exp Med 108:925–944PubMedGoogle Scholar
  77. Hobbs JA, May R, Tanousis K, McNeill E, Mathies M, Gebhardt C, Henderson R, Robinson MJ, Hogg N (2003) Myeloid cell function in MRP-14 (S100A9) null mice. Mol Cell Biol 23:2564–2576PubMedGoogle Scholar
  78. Horowitz BJ, Mardh PA, Nagy E, Rank EL (1994) Vaginal lactobacillosis. Am J Obstet Gynecol 170:857–861PubMedGoogle Scholar
  79. Hughes AL (1999) Evolutionary diversification of the mammalian defensins. Cell Mol Life Sci 56:94–103PubMedGoogle Scholar
  80. Ibrahim HR, Matsuzaki T, Aoki T (2001) Genetic evidence that antibacterial activity of lysozyme is independent of its catalytic function. FEBS Lett 506:27–32PubMedGoogle Scholar
  81. Joiner KA, Ganz T, Albert J, Rotrosen D (1989) The opsonizing ligand on Salmonella typhimurium influences incorporation of specific, but not azurophil, granule constituents into neutrophil phagosomes. J Cell Biol 109:2771–2782PubMedGoogle Scholar
  82. Jones DE, Bevins CL (1992) Paneth cells of the human small intestine express an antimicrobial peptide gene. J Biol Chem 267:23216–23225PubMedGoogle Scholar
  83. Jones DE, Bevins CL (1993) Defensin-6 mRNA in human Paneth cells: implications for antimicrobial peptides in host defense of the humanbowel. FEBS Lett 315:187–192PubMedGoogle Scholar
  84. Kossel A (1896) Uber die basichen Stoffe des Zellkerns. Z Ohysiol Chem 22:176–190Google Scholar
  85. Laible NJ, Germaine GR (1985) Bactericidal activity of human lysozyme, muramidase-inactive lysozyme, and cationic polypeptides against Streptococcus sanguis and Streptococcus faecalis: inhibition by chitin oligosaccharides. Infect Immun 48:720–728PubMedGoogle Scholar
  86. Larrick JW, Hirata M, Balint RF, Lee J, Zhong J, Wright SC (1995) Human CAP18: a novel antimicrobial lipopolysaccharide-binding protein. Infect Immun 63:1291–1297PubMedGoogle Scholar
  87. Lee-Huang S, Huang PL, Sun Y, Huang PL, Kung HF, Blithe DL, Chen HC (1999) Lysozyme and RNases as anti-HIV components in beta-core preparations of human chorionic gonadotropin. Proc Natl Acad Sci U S A 96:2678–2681PubMedGoogle Scholar
  88. Lee-Huang S, Maiorov V, Huang PL, Ng A, Lee HC, Chang YT, Kallenbach N, Huang PL, Chen HC (2005) Structural and functional modeling of human lysozyme reveals a unique nonapeptide, HL9, with anti-HIV activity. Biochemistry 44:4648–4655PubMedGoogle Scholar
  89. Lehrer RI, Ganz T (2002) Defensins of vertebrate animals. Curr Opin Immunol 14:96–102PubMedGoogle Scholar
  90. Lehrer RI, Daher K, Ganz T, Selsted ME (1985a) Direct inactivation of viruses by MCP-1 and MCP-2, natural peptide antibiotics from rabbit leukocytes. J Virol 54:467–472PubMedGoogle Scholar
  91. Lehrer RI, Szklarek D, Ganz T, Selsted ME (1985b) Correlation of binding of rabbit granulocyte peptides to Candida albicans with candidacidal activity. Infect Immun 49:207–211PubMedGoogle Scholar
  92. Lehrer RI, Ganz T, Szklarek D, Selsted ME (1988) Modulation of the in vitro candidacidal activity of human neutrophil defensins by target cell metabolism and divalent cations. J Clin Invest 81:1829–1835PubMedGoogle Scholar
  93. Lehrer RI, Bevins CL, Ganz T (1999) Defensins and other antimicrobial peptides. In: Ogra PL, Mestecky J, Lamm ME, Strober W, Bienenstock J, McGhee JR (eds) Mucosal immunology. Academic Press, San Diego, pp 89–99Google Scholar
  94. Leonova L, Kokryakov VN, Aleshina GM, Hong T, Nguyen T, Zhao C, Waring AJ, Lehrer RI (2001) Circular minidefensins and posttranslational generation of molecular diversity. J Leukoc Biol 70:461–464PubMedGoogle Scholar
  95. Liu L, Zhao C, Heng HHQ, Ganz T (1997) The human β-defensin-1 and α-defensins are encoded by adjacent genes: two peptide families with differing disulfide topology share a common ancestry. Genomics 43:316–32PubMedGoogle Scholar
  96. Ludtke SJ, He K, Heller WT, Harroun TA, Yang L, Huang HW (1996) Membrane pores induced by magainin. Biochemistry 35:13723–13728PubMedGoogle Scholar
  97. Mackewicz CE, Yuan J, Tran P, Diaz L, Mack E, Selsted ME, Levy JA (2003) Alphadefensins can have anti-HIV activity but are not CD8 cell anti-HIV factors. AIDS 17:F23–F32PubMedGoogle Scholar
  98. Mangoni ME, Aumelas A, Charnet P, Roumestand C, Chiche L, Despaux E, Grassy G, Calas B, Chavanieu A (1996) Change inmembrane permeability induced by protegrin 1: implication of disulphide bridges for pore formation. FEBS Lett 383:93–98PubMedGoogle Scholar
  99. Manitz MP, Horst B, Seeliger S, Strey A, Skryabin BV, Gunzer M, Frings W, Schonlau F, Roth J, Sorg C, Nacken W (2003) Loss of S100A9 (MRP14) Results in reduced interleukin-8-induced CD11b surface expression, a polarized microfilament system, and diminished responsiveness to chemoattractants in vitro. Mol Cell Biol 23:1034–1043PubMedGoogle Scholar
  100. Matsuzaki K (2001) Why and how are peptide-lipid interactions utilized for self defence? Biochem Soc Trans 29:598–601PubMedGoogle Scholar
  101. McCray PB, Bentley L (1997) Human airway epithelia express a β-defensin. Am J Respir Cell Mol Biol 16:343–349PubMedGoogle Scholar
  102. McGregor JA, French JI (2000) Bacterial vaginosis in pregnancy. Obstet Gynecol Surv 55:S1–S19PubMedGoogle Scholar
  103. McNeely TB, Dealy M, Dripps DJ, Orenstein JM, Eisenberg SP, Wahl SM (1995) Secretory leukocyte protease inhibitor: a human saliva protein exhibiting anti-human immunodeficiency virus 1 activity in vitro. J Clin Invest 96:456–464PubMedGoogle Scholar
  104. McNeely TB, Shugars DC, Rosendahl M, Tucker C, Eisenberg SP, Wahl SM (1997) Inhibition of human immunodeficiency virus type 1 infectivity by secretory leukocyte protease inhibitor occurs prior to viral reverse transcription. Blood 90:1141–1149PubMedGoogle Scholar
  105. Meredith SD, Raphael GD, Baraniuk JN, Banks SM, Kaliner MA (1989) The pathophysiology of rhinitis. III. The control of IgG secretion. J Allergy Clin Immunol 84:920–930PubMedGoogle Scholar
  106. Miller BF, Abrams R, Dorfman A, Klein M (1942) Antibacterial properties of protamine and histone. Science 96:428–430Google Scholar
  107. Monell CR, Strand M (1994) Structural and functional similarities between synthetic HIV gp41 peptides and defensins. Clin Immunol Immunopathol 71:315–324PubMedGoogle Scholar
  108. Morrison GM, Davidson DJ, Dorin JR (1999) A novel mouse beta defensin, Defb2, which is upregulated in the airways by lipopolysaccharide. FEBS Lett 442:112–116PubMedGoogle Scholar
  109. Münk C, Wei G, Yang OO, Waring AJ, Wang W, Hong T, Lehrer RI, Landau NR, Cole AM (2003) The theta-defensin, retrocyclin, inhibits HIV-1 entry. AIDS Res Hum Retroviruses 19:875–881PubMedGoogle Scholar
  110. Nakashima H, Yamamoto N, Masuda M, Fujii N (1993) Defensins inhibit HIV replication in vitro (letter). AIDS 7:1129PubMedGoogle Scholar
  111. Negroni P, Fischer I (1944) Antibiotic action of protamines and histones. Rev Soc Argentina Biol 20:307–314Google Scholar
  112. Nguyen TX, Cole AM, Lehrer RI (2003) Evolution of primate theta-defensins: a serpentine path to a sweet tooth. Peptides 24:1647–1654PubMedGoogle Scholar
  113. Niyonsaba F, Iwabuchi K, Matsuda H, Ogawa H, Nagaoka I (2002) Epithelial cell-derived human beta-defensin-2 acts as a chemotaxin for mast cells through a pertussis toxin-sensitive and phospholipase C-dependent pathway. Int Immunol 14:421–426PubMedGoogle Scholar
  114. Ogata K, Linzer BA, Zuberi RI, Ganz T, Lehrer RI, Catanzaro A (1992) Activity of defensins from human neutrophilic granulocytes against Mycobacterium avium-Mycobacterium intracellulare. Infect Immun 60:4720–4725PubMedGoogle Scholar
  115. Oren A, Ganz T, Liu L, Meerloo T (2003) In human epidermis, [beta]-defensin 2 is packaged in lamellar bodies. Exp Mol Pathol 74:180–182PubMedGoogle Scholar
  116. Ouellette AJ (2005) Paneth cell alpha-defensins: peptidemediators of innate immunity in the small intestine. Springer Semin Immunopathol 27:133–146PubMedGoogle Scholar
  117. Ouellette AJ, Bevins CL (2001) Paneth cell defensins and innate immunity of the small bowel. Inflamm Bowel Dis 7:43–50PubMedGoogle Scholar
  118. Panyutich A, Ganz T (1991) Activated alpha 2-macroglobulin is a principal defensinbinding protein. Am J Respir Cell Mol Biol 5:101–106PubMedGoogle Scholar
  119. Panyutich AV, Szold O, Poon PH, Tseng Y, Ganz T (1994) Identification of defensin binding to C1 complement. FEBS Lett 356:169–173PubMedGoogle Scholar
  120. Panyutich AV, Hiemstra PS, Van Wetering S, Ganz T (1995) Human neutrophil defensin and serpins form complexes and inactivate each other. Am J Respir Cell Mol Biol 12:351–357PubMedGoogle Scholar
  121. Park CB, Yi KS, Matsuzaki K, Kim MS, Kim SC (2000) Structure-activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II. Proc Natl Acad Sci U S A 97:8245–8250PubMedGoogle Scholar
  122. Patterson BK, Landay A, Andersson J, Brown C, Behbahani H, Jiyamapa D, Burki Z, Stanislawski D, Czerniewski MA, Garcia P (1998) Repertoire of chemokine receptor expression in the female genital tract: implications for human immunodeficiency virus transmission. Am J Pathol 153:481–490PubMedGoogle Scholar
  123. Patton DL, Thwin SS, Meier A, Hooton TM, Stapleton AE, Eschenbach DA (2000) Epithelial cell layer thickness and immune cell populations in the normal human vagina at different stages of the menstrual cycle. Am J Obstet Gynecol 183:967–973PubMedGoogle Scholar
  124. Pillay K, Coutsoudis A, Gadzi-Naqvi AK, Kuhn L, Coovadia HM, Janoff EN (2001) Secretory leukocyte protease inhibitor in vaginal fluids and perinatal human immunodeficiency virus type 1 transmission. J Infect Dis 183:653–656PubMedGoogle Scholar
  125. Pivarcsi A, Nagy I, Koreck A, Kis K, Kenderessy-Szabo A, Szell M, Dobozy A, Kemeny L (2005) Microbial compounds induce the expression of pro-inflammatory cytokines, chemokines and human beta-defensin-2 in vaginal epithelial cells. Microbes Infect 7:1117–1127PubMedGoogle Scholar
  126. Puddu P, Borghi P, Gessani S, Valenti P, Belardelli F, Seganti L (1998) Antiviral effect of bovine lactoferrin saturated with metal ions on early steps of human immunodeficiency virus type 1 infection. Int J Biochem Cell Biol 30:1055–1062PubMedGoogle Scholar
  127. Qu XD, Lloyd KC, Walsh JH, Lehrer RI (1996) Secretion of type II phospholipase A2 and cryptdin by rat small intestinal Paneth cells. Infect Immun 64:5161–5165PubMedGoogle Scholar
  128. Quayle AJ (2002) The innate and early immune response to pathogen challenge in the female genital tract and the pivotal role of epithelial cells. J Reprod Immunol 57:61–79PubMedGoogle Scholar
  129. Quayle AJ, Porter EM, Nussbaum AA, Wang YM, Brabec C, Yip KP, Mok SC (1998) Gene expression, immunolocalization, and secretion of human defensin-5 in human female reproductive tract. Am J Pathol 152:1247–1258PubMedGoogle Scholar
  130. Quinones-Mateu ME, Lederman MM, Feng Z, Chakraborty B, Weber J, Rangel HR, Marotta ML, Mirza M, Jiang B, Kiser P, Medvik K, Sieg SF, Weinberg A (2003) Human epithelial beta-defensins 2 and 3 inhibit HIV-1 replication. AIDS 17: F39–F48PubMedGoogle Scholar
  131. Reid G (2001) Probiotic agents to protect the urogenital tract against infection. Am J Clin Nutr 73:437S–443SPubMedGoogle Scholar
  132. Salzman NH, Ghosh D, Huttner KM, Paterson Y, Bevins CL (2003) Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature 422:522–526PubMedGoogle Scholar
  133. Satoh Y (1988) Effect of live and heat-killed bacteria on the secretory activity of Paneth cells in germ-free mice. Cell Tissue Res 251:87–93PubMedGoogle Scholar
  134. Satoh Y, Ishikawa K, Oomori Y, Takeda S, Ono K (1992) Bethanechol and a G-protein activator, NaF/AlCl3, induce secretory response in Paneth cells ofmouse intestine. Cell Tissue Res 269:213–220PubMedGoogle Scholar
  135. Schonwetter BS, Stolzenberg ED, Zasloff MA (1995) Epithelial antibiotics induced at sites of inflammation. Science 267:1645–1648PubMedGoogle Scholar
  136. Schwebke JR, Burgess D (2004) Trichomoniasis. Clin Microbiol Rev 17:794–803PubMedGoogle Scholar
  137. Selsted ME, Harwig SS (1987) Purification, primary structure, and antimicrobial activities of a guinea pig neutrophil defensin. Infect Immun 55:2281–2286PubMedGoogle Scholar
  138. Selsted ME, Ouellette AJ (2005) Mammalian defensins in the antimicrobial immune response. Nat Immunol 6:551–557PubMedGoogle Scholar
  139. Selsted ME, Szklarek D, Lehrer RI (1984) Purification and antibacterial activity of antimicrobial peptides of rabbit granulocytes. Infect Immun 45:150–154PubMedGoogle Scholar
  140. Selsted ME, Tang YQ, Morris WL, McGuire PA, Novotny MJ, Smith W, Henschen AH, Cullor JS (1993) Purification, primary structures, and antibacterial activities of beta-defensins, a new family of antimicrobial peptides from bovine neutrophils. J Biol Chem 268:6641–6648PubMedGoogle Scholar
  141. Shafer WM, Veal WL, Lee EH, Zarantonelli L, Balthazar JT, Rouquette C (2001) Genetic organization and regulation of antimicrobial efflux systems possessed by Neisseria gonorrhoeae and Neisseria meningitidis. J Mol Microbiol Biotechnol 3:219–224PubMedGoogle Scholar
  142. Shai Y (1999) Mechanism of the binding, insertion and destabilization of phospholipids bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta 1462:55–70PubMedGoogle Scholar
  143. Shi J, Zhang G, Wu H, Ross C, Blecha F, Ganz T (1999) Porcine epithelial beta-defensin 1 is expressed in the dorsal tongue at antimicrobial concentrations. Infect Immun 67:3121–3127PubMedGoogle Scholar
  144. Shugars DC, Alexander AL, Fu K, Freel SA (1999) Endogenous salivary inhibitors of human immunodeficiency virus. Arch Oral Biol 44:445–453PubMedGoogle Scholar
  145. Singh PK, Jia HP, Wiles K, Hesselberth J, Liu L, Conway BD, Greenberg EP, Valore EV, Welsh MJ, Ganz T, Tack BF, McCray PBJ (1998) Production of β-defensins by human airway epithelia. Proc Natl Acad Sci U S A 95:14961–14966PubMedGoogle Scholar
  146. Singh PK, Tack BF, McCray PB Jr, Welsh MJ (2000) Synergistic and additive killing by antimicrobial factors found in human airway surface liquid. Am J Physiol Lung Cell Mol Physiol 279:L799–L805PubMedGoogle Scholar
  147. Sinha S, Cheshenko N, Lehrer RI, Herold BC (2003) NP-1, a rabbit alpha-defensin, prevents the entry and intercellular spread of herpes simplex virus type 2. Antimicrob Agents Chemother 47:494–500PubMedGoogle Scholar
  148. Sobel JD (1992) Pathogenesis and treatment of recurrent vulvovaginal candidiasis. Clin Infect Dis 14[Suppl 1]:S148–S153PubMedGoogle Scholar
  149. Sobel JD (2004) Current trends and challenges in candidiasis. Oncology (Huntingt) 18:7–8PubMedGoogle Scholar
  150. Sohnle PG, Hunter MJ, Hahn B, Chazin WJ (2000) Zinc-reversible antimicrobial activity of recombinant calprotectin (migration inhibitory factor-related proteins 8 and 14). J Infect Dis 182:1272–1275PubMedGoogle Scholar
  151. Sorensen OE, Gram L, Johnsen AH, Andersson E, Bangsboll S, Tjabringa GS, Hiemstra PS, Malm J, Egesten A, Borregaard N (2003) Processing of seminal plasma hCAP-18 to ALL-38 by gastricsin: a novel mechanism of generating antimicrobial peptides in vagina. J Biol Chem 278:28540–28546PubMedGoogle Scholar
  152. Sorensen OE, Thapa DR, Rosenthal A, Liu L, Roberts AA, Ganz T (2005) Differential regulation of beta-defensin expression in human skin by microbial stimuli. J Immunol 174:4870–4879PubMedGoogle Scholar
  153. Steinbakk M, Naess-Andresen CF, Lingaas E, Dale I, Brandtzaeg P, Fagerhol MK (1990) Antimicrobial actions of calcium binding leucocyte L1 protein, calprotectin. Lancet 336:763–765PubMedGoogle Scholar
  154. Steinman RM, Inaba K (1999) Myeloid dendritic cells. J Leukoc Biol 66:205–208PubMedGoogle Scholar
  155. Swart PJ, Kuipers EM, Smit C, Van Der Strate BW, Harmsen MC, Meijer DK (1998) Lactoferrin. Antiviral activity of lactoferrin. Adv Exp Med Biol 443:205–213PubMedGoogle Scholar
  156. Taha TE, Hoover DR, Dallabetta GA, Kumwenda NI, Mtimavalye LA, Yang LP, Liomba GN, Broadhead RL, Chiphangwi JD, Miotti PG (1998) Bacterial vaginosis and disturbances of vaginal flora: association with increased acquisition of HIV. AIDS 12:1699–1706PubMedGoogle Scholar
  157. Taha TE, Gray RH, Kumwenda NI, Hoover DR, Mtimavalye LA, Liomba GN, Chiphangwi JD, Dallabetta GA, Miotti PG (1999) HIV infection and disturbances of vaginal flora during pregnancy. J Acquir Immune Defic Syndr Hum Retrovirol 20:52–59PubMedGoogle Scholar
  158. Tang YQ, Yuan J, Osapay G, Osapay K, Tran D, Miller CJ, Ouellette AJ, Selsted ME (1999) A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated α-defensins. Science 286:498–502PubMedGoogle Scholar
  159. Tomee JF, Koeter GH, Hiemstra PS, Kauffman HF (1998) Secretory leukoprotease inhibitor: a native antimicrobial protein presenting a new therapeutic option? Thorax 53:114–116PubMedGoogle Scholar
  160. Trabi M, Schirra HJ, Craik DJ (2001) Three-dimensional structure of RTD-1, a cyclic antimicrobial defensin from Rhesus macaque leukocytes. Biochemistry 40:4211–4221PubMedGoogle Scholar
  161. Tran D, Tran PA, Tang YQ, Yuan J, Cole T, Selsted ME (2002) Homodimeric thetadefensins from Rhesus macaque leukocytes—Isolation, synthesis, antimicrobial activities, and bacterial binding properties of the cyclic peptides. J Biol Chem 277:3079–3084PubMedGoogle Scholar
  162. Turner J, Cho Y, Dinh NN, Waring AJ, Lehrer RI (1998) Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils. Antimicrob Agents Chemother 42:2206–2214PubMedGoogle Scholar
  163. Turpin JA, Schaeffer CA, Bu M, Graham L, Buckheit RW Jr, Clanton D, Rice WG (1996) Human immunodeficiency virus type-1 (HIV-1) replication is unaffected by human secretory leukocyte protease inhibitor. Antiviral Res 29:269–277PubMedGoogle Scholar
  164. UNAIDS/World Health Organization (2004) Global estimates of HIV/AIDS epidemic. www unaids org [accessed June 13, 2005]Google Scholar
  165. Valore EV, Ganz T (1992) Posttranslational processing of defensins inimmature human myeloid cells. Blood 79:1538–1544PubMedGoogle Scholar
  166. Valore EV, Park CH, Quayle AJ, Wiles KR, McCray PB, Ganz T (1998) Human β-defensin-1: an antimicrobial peptide of urogenital tissues. J Clin Invest 101:1633–1642PubMedGoogle Scholar
  167. Valore EV, Park CH, Igreti SL, Ganz T (2002) Antimicrobial components of vaginal fluid. Am J Obstet Gynecol 187:561–568PubMedGoogle Scholar
  168. Vaughan VC, Novy FG, McClintock CT (1893) The germicidal properties of nucleins. Med News 62:536–538Google Scholar
  169. Wang SA, Papp JR, Stamm WE, Peeling RW, Martin DH, Holmes KK (2005) Evaluation of antimicrobial resistance and treatment failures for Chlamydia trachomatis: a meeting report. J Infect Dis 191:917–923PubMedGoogle Scholar
  170. Wang W, Cole AM, Hong T, Waring AJ, Lehrer RI (2003) Retrocyclin, an Antiretroviral θ-defensin, is a lectin. J Immunol 170:4708–4716PubMedGoogle Scholar
  171. Wang X, Zhang Z, Louboutin JP, Moser C, Weiner DJ, Wilson JM (2003) Airway epithelia regulate expression of human beta-defensin 2 through Toll-like receptor 2. FASEB J 17:1727–1729PubMedGoogle Scholar
  172. Wang YQ, Griffiths WJ, Jornvall H, Agerberth B, Johansson J (2002) Antibacterial peptides in stimulated human granulocytes—characterization of ubiquitinated histone H1A. Eur J Biochem 269:512–518PubMedGoogle Scholar
  173. Wasserheit JN (1992) Epidemiological synergy. Interrelationships between human immunodeficiency virus infection and other sexually transmitted diseases. Sex Transm Dis 19:61–77PubMedGoogle Scholar
  174. Wecke J, Lahav M, Ginsburg I, Giesbrecht P (1982) Cell wall degradation of Staphylococcus aureus by lysozyme. Arch Microbiol 131:116–123PubMedGoogle Scholar
  175. Weiss TM, Yang L, Ding L, Wang WC, Waring AJ, Lehrer RI, Huang HW (2002) Two states of a cyclic antimicrobial peptide theta-defensin in lipid bilayers. Biophys J 82:7AGoogle Scholar
  176. Wiesenfeld HC, Hillier SL, Krohn MA, Landers DV, Sweet RL (2003) Bacterial vaginosis is a strong predictor of Neisseria gonorrhoeae and Chlamydia trachomatis infection. Clin Infect Dis 36:663–668PubMedGoogle Scholar
  177. Yasin B, Wang W, Pang M, Cheshenko N, Hong T, Waring AJ, Herold BC, Wagar EA, Lehrer RI (2004) Theta defensins protect cells from infection by herpes simplex virus by inhibiting viral adhesion and entry. J Virol 78:5147–5156PubMedGoogle Scholar
  178. Zanetti M, Gennaro R, Romeo D (1995) Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett 374:1–5PubMedGoogle Scholar
  179. Zariffard MR, Harwani S, Novak RM, Graham PJ, Ji X, Spear GT (2004) Trichomonas vaginalis infection activates cells through toll-like receptor 4. Clin Immunol 111:103–107PubMedGoogle Scholar
  180. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395PubMedGoogle Scholar
  181. Zhang L, He T, Talal A, Wang G, Frankel SS, Ho DD (1998) In vivo distribution of the human immunodeficiency virus/simian immunodeficiency virus coreceptors: CXCR4, CCR3, and CCR5. J Virol 72:5035–5045PubMedGoogle Scholar
  182. Zhang L, Yu W, He T, Yu J, Caffrey RE, Dalmasso EA, Fu S, Pham T, Mei J, Ho JJ, Zhang W, Lopez P, Ho DD (2002) Contribution of human alpha-defensin-1,-2 and-3 to the anti-HIV-1 activity of CD8 antiviral factor. Science 298:995–1000PubMedGoogle Scholar
  183. Zhao C, Nguyen T, Liu L, Sacco RE, Brogden KA, Lehrer RI (2001) Gallinacin-3, an Inducible Epithelial β-Defensin in the Chicken. Infect Immun 69:2684–2691PubMedGoogle Scholar
  184. Zimmermann GR, Legault P, Selsted ME, Pardi A (1995) Solution structure of bovine neutrophil beta-defensin-12: the peptide fold of the beta-defensins is identical to that of the classical defensins. Biochemistry 34:13663–13671PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • A. M. Cole
    • 1
  1. 1.Department of Molecular Biology and Microbiology, Biomolecular Science CenterUniversity of Central FloridaOrlandoUSA

Personalised recommendations