Skip to main content

Antimicrobial Peptides Versus Invasive Infections

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 306))

Abstract

It has been estimated that there are more microorganisms within and upon the human body than there are human cells. By necessity, every accessible niche must be defended by innate mechanisms to prevent invasive infection, and ideally that precludes the need for robust inflammatory responses. Yet the potential for pathogens to transcend the integument actively or passively and access the bloodstreamemphasizes the need for rapid and potent antimicrobial defense mechanisms within the vascular compartment. Antimicrobial peptides from leukocytes have long been contemplated as being integral to defense against these infections. Recently, platelets are increasingly recognized for their likely multiple roles in antimicrobial host defense. Platelets and leukocytes sharemany structural and functional archetypes. Once activated, both cell types respond in specificways that emphasize key roles for their antimicrobial peptides in host defense efficacy: (a) targeted accumulation at sites of tissue injury or infection; (b) direct interaction with pathogens; and (c) deployment of intracellular (leukocyte phagosomes) or extracellular (platelet secretion) antimicrobial peptides. Antimicrobial peptides from these cells exert rapid, potent, and direct antimicrobial effects against organisms that commonly access the bloodstream. Experimental models in vitro and in vivo show that antimicrobial peptides from these cells significantly contribute to prevent or limit infection. Moreover, certain platelet antimicrobial proteins are multifunctional kinocidins (microbicidal chemokines) that recruit leukocytes to sites of infection, and potentiate the antimicrobial mechanisms of these cells. In turn, pathogens pre-decorated by kinocidins may be more efficiently phagocytosed and killed by leukocytes and their antimicrobial peptide arsenal.Hence,multiple and relevant interactions between platelets and leukocytes have immunologic functions yet to be fully understood. A clearer definition of these interactions, and the antimicrobial peptide effectors contributing to these functions, will significantly advance our understanding of antimicrobial host defense against invasive infection. In addition, this knowledge may accelerate development of novel anti-infective agents and strategies against pathogens that have become refractory to conventional antimicrobials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bates DM, von Eiff C, McNamara PJ, Peters G, Yeaman MR, Bayer AS, Proctor RA (2003) Staphylococcus aureusmutants are as infective as the parent strains but the menadione biosynthetic mutant persists within the kidney. J Infect Dis 187:1654–1661

    PubMed  Google Scholar 

  • Bayer AS, Sullam PM, Ramos M, Li C, Cheung AL, Yeaman MR (1995) Staphylococus aureus induces platelet aggregation via a fibrinogen-dependent mechanism which is independent of principal platelet GPIIb/IIIa fibrinogen-binding domains. Infect Immun 63:3634–3641

    PubMed  CAS  Google Scholar 

  • Bayer AS, Ramos MD, Menzies BE, Yeaman MR, Shen AJ, Cheung AL (1997) Hyper-production of α-toxin by Staphylococcus aureus results in paradoxically-reduced virulence in experimental endocarditis: a host defense role for platelet microbicidal proteins. Infect Immun 65:4652–4660

    PubMed  CAS  Google Scholar 

  • Bensing BA, Rubens CE, Sullam PM (2001) Genetic loci of Streptococcus mitis that mediate binding to human platelets. Infect Immun 69:1373–1380

    PubMed  CAS  Google Scholar 

  • Chang FY, Singh N, Gayowski T, Wagener MM, Mietzner SM, Stout JE, Marino IR (2000) Thrombocytopenia in liver transplant recipients: predictors, impact on fungal infections, and role of endogenous thrombopoietin. Transplantation 69:70–75

    PubMed  CAS  Google Scholar 

  • Cheung AL, Fischetti VA (1990) The role of fibrinogen in staphylococcal adherence to catheters in vitro. J Infect Dis 161:1177–1186

    PubMed  CAS  Google Scholar 

  • Christin L, Wyson DR, Meshulam T, Hastey R, Simons ER, Diamond RD (1996) Mechanisms and target sites of damage in killing of Candida albicans hyphae by human polymorphonuclear neutrophils. J Infect Dis 176:1567–1578

    Google Scholar 

  • Clawson CC, White JG (1971) Platelet interaction with bacteria. II. Fate of bacteria. Am J Pathol 65:381–398

    PubMed  CAS  Google Scholar 

  • Cocchi F, DeVico AL, G-Demo A, Arya SK, Gallo RC, Lusso P (1995) Identification of RANTES, MIP-1α, and MIP-1β as the major HIV-suppressive factors produced by CD8+ T cells. Science 270:1811–1815

    PubMed  CAS  Google Scholar 

  • Cole AM, Dewan P, Ganz T (1999) Innate antimicrobial activity of nasal secretions. Infect Immun 67:3267–3275

    PubMed  CAS  Google Scholar 

  • Dankert J, Krijgsveld J, van Der Werff J, Joldersma W, Zaat SA (2001) Platelet microbicidal activity is an important defense factor against viridans streptococcal endocarditis. J Infect Dis 184:597–605

    PubMed  CAS  Google Scholar 

  • Darveau RP, Blake J, Seachord CL, Cosand WL, Cunninigham MD, Cassiano-Cough L, Maloney G (1992) Peptide related to the carboxy-terminus of human platelet factor IV with antibacterial activity. J Clin Invest 90:447–455

    PubMed  CAS  Google Scholar 

  • Dhawan VK, Bayer, AS, Yeaman MR (1998) In vitro resistance to thrombin-induced platelet microbicidal protein is associated with enhanced progression and hematogenous dissemination in experimental Staphylococcus aureus infective endocarditis. Infect Immun 66:3476–3479

    PubMed  CAS  Google Scholar 

  • Dhawan VK, Yeaman MR, Bayer AS (1999) Influence of in vitro susceptibility phenotype against thrombin-induced platelet microbicidal protein on treatment and prophylaxis outcomes of experimental Staphylococcus aureus endocarditis. J Infect Dis 180:1561–1568

    PubMed  CAS  Google Scholar 

  • Dhawan VK, Bayer AS, Yeaman MR (2000) Thrombin-induced platelet microbicidal protein susceptibility phenotype influences the outcome of oxacillin prophylaxis and therapy of experimental Staphylococcus aureus endocarditis. Antimicrob Agents Chemother 44:3206–3209

    PubMed  CAS  Google Scholar 

  • Deuel TF, Senior RM, Chang D, Griffith GL, Heinrikson RL, Kaiser ET (1981) Platelet factor-4 is chemotactic for neutrophils and monocytes. Proc Natl Acad Sci U S A 78:4548–4587

    Google Scholar 

  • Essien EM, Ebhota MI (1983) Platelet secretory activities in acute malaria (Plasmodium falciparum) infection. Acta Haematol 70:183–188

    PubMed  CAS  Google Scholar 

  • Feldman C, Kallenbach JM, Levy H, Thorburn JR, Hurwitz MD, Koornhof HJ (1991) Comparison of bacteraemic community-acquired lobar pneumonia due to Streptococcus pneumoniae and Klebsiella pneumoniae in an intensive care unit. Respiration 58:265–270

    PubMed  CAS  Google Scholar 

  • Fields PL, Groisman EA, Heffron F (1989) A Salmonella locus that controls resistance to microbicidal proteins from phagocytic cells. Science 243:1059–1062

    PubMed  CAS  Google Scholar 

  • Filler SG, Joshi M, Phan QT, Diamond RD, Edwards JE Jr, Yeaman MR (1999) Platelets protect vascular endothelial cells from injury due to Candida albicans. Abstract 2163, 39th ICAAC, American Society for Microbiology. San Francisco, CA

    Google Scholar 

  • Fodor J (1887) Die fahigkeit des blutes bakterien zu vernichten. Deutsch Med Wochenschr 13:745–747

    Google Scholar 

  • Fowler VG, McIntyre LM, Yeaman MR, Peterson GE, Reller LB, Corey GR, Wray D, Bayer AS (2000) In vitro resistance to thrombin-induced platelet microbicidal protein in isolates of Staphylococcus aureus from endocarditis patients correlates with an intravascular device source. J Infect Dis 182:1251–1254

    PubMed  CAS  Google Scholar 

  • Fowler VG, Scheld WM, Bayer AS (2004) Endocarditis and intravascular infections. In: Mandell GL, Bennet JE, Dolin R (eds), Principles and practice of infectious diseases (6th edn.) Chap. 74. Churchill Livingstone, New York

    Google Scholar 

  • Fowler VG Jr, Sakoulas G, McIntyre LM, Meka V, Arbeit RD, Cabell CH, Stryjewski ME, Eliopoulos GM, Reller LB, Corey GR, Jones T, Lucindo N, Yeaman MR, Bayer AS (2004) Persistent bacteremia due to MRSA infection is associated with agr dysfunction and low-level in vitro resistance to thrombin-induced platelet microbicidal protein. J Infect Dis 190:1140–1149

    PubMed  CAS  Google Scholar 

  • Frohm M, Gunne H, Bergman AC, Agerberth B, Bergman T, Boman A, Lidén S, Jörnvall H, Boman HG (1996) Biochemical and antibacterial analysis of human wound and blister fluid. Eur J Biochem 237:86–92

    PubMed  CAS  Google Scholar 

  • Ganz T (2003) Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood 102:783–788

    PubMed  CAS  Google Scholar 

  • Ganz T, Metcalf JA, Gallin JI, Boxer LA, Lehrer RI (1988) Microbicidal/cytotoxic proteins of neutrophils are deficient in two disorders: Chediak-Higashi syndrome and “specific” granule deficiency. J Clin Invest 82:552–556

    PubMed  CAS  Google Scholar 

  • Ginsburg I (1988) The biochemistry of bacteriolysis: facts, paradoxes, and myths. Microbiol Sci 5:137–142

    PubMed  CAS  Google Scholar 

  • Harada K, Ohba K, Ozaki S, Isse K, Hirayama T, Wada A, Nakanuma Y (2004) Peptide antibiotic human beta-defensin-1 and-2 contribute to antimicrobial defense of the intrahepatic biliary tree. Hepatology 40:925–932

    PubMed  CAS  Google Scholar 

  • Herzberg MC, Gong K, MacFarlane GD, Erickson PR, Soberay AH, Krebsbach PH, Gopalraj M, Schilling K, Bowen WH (1990) Phenotypic characterization of Streptococcus sanguis virulence factors associated with bacterial endocarditis. Infect Immun 58:515–522

    PubMed  CAS  Google Scholar 

  • Isomoto H, Mukae H, Ishimoto H, Date Y, Nishi Y, Inoue K, Wada A, Hirayama T, Nakazato M, Kohno S (2004) Elevated concentrations of alpha-defensins in gastric juice of patients with Helicobacter pylori infection. Am J Gastroenterol 99:1916–1923

    PubMed  CAS  Google Scholar 

  • Johnson FB, Donaldson DM (1968) Purification of staphylocidal α-lysin from rabbit serum. J Bacteriol 96:589–595

    PubMed  CAS  Google Scholar 

  • Kirkpatrick B, Reeves DS, MacGowan AP (1994) A review of the clinical presentation, laboratory features, antimicrobial therapy and outcome of 77 episodes of pneumococcal meningitis occurring in children and adults. J Infect 29:171–182

    PubMed  CAS  Google Scholar 

  • Klinger MHF, Jelkmann W (2002) Role of blood platelets in infection and inflammation. J Interferon Cytokine Res 22:913–922

    PubMed  CAS  Google Scholar 

  • Koo SP, Bayer AS, Kagan BL, Yeaman MR (1999) Membrane permeabilization by thrombin-induced PMP-1 is modulated by transmembrane voltage polarity and magnitude. Infect Immun 67:2475–2481

    PubMed  CAS  Google Scholar 

  • Korzweniowski OM, Scheld WM, Bithell TC, Croft BH, Sande MA (1979) The effect of aspirin on the production of experimental Staphylococcus aureus endocarditis 19th ICAAC, American Society for Microbiology, Washington, DC

    Google Scholar 

  • Krijgsveld J, Zaat SA, Meeldijk J, van Veelen P, Fang G, Poolman B, Brandt E, Ehlert J, Kuijpers A, Engbers G, Feijen J, Dankert J (2000) Thrombocidins, microbicidal proteins from human blood platelets, are C-terminal deletion products of CXC chemokines. J Biol Chem 275:20374–20381

    PubMed  CAS  Google Scholar 

  • Kristian SA, Durr M, Van Strijp JA, Neumeister B, Peschel A (2003) MprF-mediated lysinylation of phospholipids in Staphylococcus aureus leads to protection against oxygen-independent neutrophil killing. Infect Immun 71:546–549

    PubMed  CAS  Google Scholar 

  • Kupferwasser LI, Yeaman MR, Shapiro SM, Nast CC, Sullam PM, Filler SG, Bayer AS (1999) Acetylsalicylic acid reduces vegetation bacterial density, hematogenous bacterial dissemination, and frequency of embolic events in experimental Staphylococcus aureus endocarditis through antiplatelet and antibacterial effects. Circulation 99:2791–2797

    PubMed  CAS  Google Scholar 

  • Kupferwasser LI, Yeaman MR, Shapiro SM, Nast CC, Bayer AS (2002) In vitro susceptibility to thrombin-induced platelet microbicidal protein is associated with reduced disease progression and complication rates in experimental Staphylococcus aureus endocarditis: microbiological, histopathologic, and echocardiographic analyses. Circulation 105:746–752

    PubMed  CAS  Google Scholar 

  • Lau YE, Rozek A, Scott MG, Goosney DL, Davidson DJ, Hancock RE (2005) Interaction and cellular localization of the human host defense peptide LL-37 with lung epithelial cells. Infect Immun 73:583–591

    PubMed  CAS  Google Scholar 

  • Lehrer RI, Ganz T, Selsted ME (1988) Oxygen-independent bactericidal systems-mechanisms and disorders. Hematol Oncol Clin North Am 2:159–169

    PubMed  CAS  Google Scholar 

  • Lorenz R, Brauer M (1988) Platelet factor 4 (PF-4) in septicaemia. Infection 16:273–276

    PubMed  CAS  Google Scholar 

  • Mandell GL, Hook EW (1969) The interaction of platelets, Salmonella, and mouse peritoneal macrophages. Proc Soc Exp Biol Med 132:757–759

    PubMed  CAS  Google Scholar 

  • Mavrommatis AC, Theodoridis T, Orfanidou A, Roussos C, Christopoulou-Kokkinou V, Zakynthinos S (2000) Coagulation system and platelets are fully activated in uncomplicated sepsis. Crit. Care Med 28:451–457

    PubMed  CAS  Google Scholar 

  • Mayo KH, Chen MJ (1989) Human platelet factor 4 monomer-dimer-tetramer equilibria investigated by 1H NMR spectroscopy. Biochemistry 28:9469–9478

    PubMed  CAS  Google Scholar 

  • Mercier RC, Rybak MJ, Bayer AS, Yeaman MR (2000) Influence of platelets and platelet microbicidal protein susceptibility on the fate of Staphylococcus aureus in an in vitro model of infective endocarditis. Infect Immun 68:4699–4705

    PubMed  CAS  Google Scholar 

  • Mercier RC, Dietz RM, Mazzola JL, Bayer AS, Yeaman MR (2004) Beneficial influence of platelets on antibiotic efficacy in an in vitro model of Staphylococcus aureus endocarditis. Antimicrob Agents Chemother 48:2551–2557

    PubMed  CAS  Google Scholar 

  • Meyer MW, Gong K, Herzberg MC (1998) Streptococcus sanguis-induced platelet clotting in rabbits and hemodynamic and cardiopulmonary consequences. Infect Immun 66:5906–5914

    PubMed  CAS  Google Scholar 

  • Mezzano S, Burgos ME, Ardiles L, Olavarria F, Concha M, Caorsi I, Aranda E, Mezzano D (1992) Glomerular localization of platelet factor 4 in streptococcal nephritis. Nephro 61:58–63

    CAS  Google Scholar 

  • Myrvik QN (1956) Serum bactericidins active against Gram-positive bacteria. Ann N Y Acad Sci 66:391–400

    CAS  Google Scholar 

  • Nachum R, Watson SW, Sullivan JD Jr, Seigel SE (1980) Antimicrobial defense mechanisms in the horseshoe crab, Limulus polyphemus: preliminary observations with heat-derived extracts of Limulus amoebocyte lysate. J Invert Pathol 32:51–58

    Google Scholar 

  • Nicolau DP, Freeman CD, Nightingale CH, Quintiliani R, Coe CJ, Maderazo EG, Cooper, BW (1993) Reduction of bacterial titers by low-dose aspirin in experimental aortic valve endocarditis. Infect Immun 61:1593–1595

    PubMed  CAS  Google Scholar 

  • Nicolau DP, Marangos MN, Nightingale CH, Quintiliani R (1995) Influence of a spirin on development and treatment of experimental Staphylococcus aureus endocarditis. Antimicrob Agents Chemother 39:1748–1751

    PubMed  CAS  Google Scholar 

  • Nizet V, Ohtake T, Lauth X, Trowbridge J, Rudisill J, Dorschner RA, Pestonjamasp V, Piraino J, Huttner K, Gallo RL (2001) Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 414:454–457

    PubMed  CAS  Google Scholar 

  • Ong PY, Ohtake T, Brandt C, Strickland I, Boguniewicz M, Ganz T, Gallo RL, Leung DY (2002) Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med 347:1151–1160

    PubMed  CAS  Google Scholar 

  • Oppenheim JJ, Yang D (2005) Alarmins: chemotactic activators of immune responses. Curr Opin Immunol 17:359–365

    PubMed  CAS  Google Scholar 

  • Osler W (1886) On certain problems in the physiology of the blood corpuscles. Med News 48:365–425

    Google Scholar 

  • Park CH, Valore EV, Waring AJ, Ganz T (2001) Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem 276:7806–7810

    PubMed  CAS  Google Scholar 

  • Paulsen F, Pufe T, Conradi L, Varoga D, Tsokos M, Papendieck J, Petersen W. (2002a) Antimicrobial peptides are expressed and produced in healthy and inflamed human synovial membranes. J Pathol 198:369–377

    PubMed  CAS  Google Scholar 

  • Paulsen FP, Pufe T, Schaudig U, Held-Feindt J, Lehmann J, Thale AB, Tillmann BN (2002b) Protection of human efferent tear ducts by antimicrobial peptides. Adv Exp Med Biol 506:547–553

    PubMed  CAS  Google Scholar 

  • Putsep K, Carlsson G, Boman HG, Andersson M (2002) Deficiency of antibacterial peptides in patients with morbus Kostmann: an observation study. Lancet 360:1144–1149

    PubMed  CAS  Google Scholar 

  • Qiu B, Frait KA, Reich F, Komuniecki E, Chensue SW (2001) Chemokine expression dynamics in mycobacterial (type-1) and schistosomal (type-2) antigen-elicited pulmonary granuloma formation. Am J Pathol 158:1503–1515

    PubMed  CAS  Google Scholar 

  • Rucinski B, Niewiarowski S, Strzyzewski M, Holt JC, Mayo KH (1990) Human platelet factor 4 and its C-terminal peptides: heparin binding and clearance from the circulation. Thromb Haemost 63:493–498

    PubMed  CAS  Google Scholar 

  • Sakoulas G, Eliopoulos GM, Fowler VG, Moellering RC, Novick RP, Lucindo N, Yeaman MR, Bayer AS (2005) Staphylococcus aureus accessory gene regulator (agr) dysfunction and vancomycin exposure are associated with autolysin defect, glycopeptide intermediate susceptibility (GISA), and reduced antimicrobial peptide susceptibility phenotypes in vitro. Antimicrob Agents Chemother 49:2687–2692

    PubMed  CAS  Google Scholar 

  • Salzman NH, Ghosh D, Huttner KM, Paterson Y, Bevins CL (2003) Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature 422:522–526

    PubMed  CAS  Google Scholar 

  • Santolaya ME, Alvarez AM, Aviles CL, Becker A, Cofre J, Enriquez N, O’Ryan M, Paya E, Salgado C, Silva P, Tordecilla J, Varas M, Villarroel M, Viviani T, Zubieta M (2002) Prospective evaluation of a model of prediction of invasive bacterial infection risk among children with cancer, fever, and neutropenia. Clin Infect Dis 35:678–683

    PubMed  CAS  Google Scholar 

  • Shafer WM, Martin LE, Spitznagel JK (1986) Late intraphagosomal hydrogen ion concentration favors the in vitro antimicrobial capacity of a 37-kilodalton cationic granule protein of human neutrophil granulocytes. Infect Immun 53:651–655

    PubMed  CAS  Google Scholar 

  • Shahan TA, Sorenson WG, Paulauskis JD, Morey R, Lewis DM (1998) Concentrationand time-dependent upregulation and release of the cytokines MIP-2, KC, TNF, and MIP-1-α in rat alveolar macrophages by fungal spores implicated in airway inflammation. Am J Respir Cell Mol Biol 18:435–440

    PubMed  CAS  Google Scholar 

  • Shin JS, Kim CW, Kwon YS, Kim JC (2004) Human beta-defensin 2 is induced by interleukin-1beta in the corneal epithelial cells. Exp Mol Med 36:204–210

    PubMed  CAS  Google Scholar 

  • Shirafuji Y, Tanabe H, Satchell DP, Henschen-Edman A, Wilson CL, Ouellette AJ (2003) Structural determinants of procryptdin recognition and cleavage bymatrix metalloproteinase-7. J Biol Chem 278:7910–7919

    PubMed  CAS  Google Scholar 

  • Siboo IR, Cheung AL, Bayer AS, Sullam PM (2001) Clumping factor A mediates binding of Staphylococcus aureus to human platelets. Infect Immun 69:3120–3127

    PubMed  CAS  Google Scholar 

  • Sieprawska-Lupa M, Mydel P, Krawczyk K, Wojcik K, Puklo M, Lupa B, Suder P, Silberring J, Reed M, Pohl J, Shafer W, McAleese F, Foster T, Travis J, Potempa J (2004) Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrob Agents Chemother 48:4673–4679

    PubMed  CAS  Google Scholar 

  • Spitznagel JK (1984) Non-oxidative antimicrobial reactions of leukocytes. Contemp Top Immunobiol 14:283–343

    PubMed  CAS  Google Scholar 

  • Srichaikul T, Nimmannitya S, Sripaisarn T, Kamolsilpa M, Pulgate C (1989) Platelet function during the acute phase of dengue hemorrhagic fever. Southeast Asian J Trop Med Pub Health 20:19–25

    CAS  Google Scholar 

  • Sullam PM, Frank U, Yeaman MR, Tauber MG, Bayer AS, Chambers HF (1993) Effect of thrombocytopenia on the early course of streptococcal endocarditis. J Infect Dis 168:910–914

    PubMed  CAS  Google Scholar 

  • Tang YQ, Yeaman MR, Selsted ME (2002) Antimicrobial peptides fromhumanplatelets. Infect Immun 70:6524–6533

    PubMed  CAS  Google Scholar 

  • Tew JG, Roberts RR, Donaldson DM (1974) Release of α-lysin fromplatelets by thrombin and by a factor produced in heparinized blood. Infect Immun 9:179–186

    PubMed  CAS  Google Scholar 

  • Tocantins LM (1938) The mammalian blood platelet in health and disease. Medicine 17:155–257

    Google Scholar 

  • Trier DA, Bayer AS, Yeaman MR (2000) Staphylococcus aureus elicits antimicrobial responses from platelets via an ADP-dependent pathway. Abstract 1010, 40th ICAAC, American Society for Microbiology. Toronto, Canada

    Google Scholar 

  • Turner RB, Liu L, Sazonova IY, Reed GL (2002) Structural elements that govern the substrate specificity of the clot-dissolving enzyme plasmin. J Biol Chem 277:33068–33074

    PubMed  CAS  Google Scholar 

  • Varoga D, Pufe T, Harder J, Meyer-Hoffert U, Mentlein R, Schroder JM, Petersen WJ, Tillmann BN, Proksch E, Goldring MB, Paulsen FP (2004) Production of endogenous antibiotics in articular cartilage. Arth Rheum 50:3526–3534

    CAS  Google Scholar 

  • Viscoli C, Bruzzi P, Castagnola E, Boni L, Calandra T, Gaya H, Meuneir F, Feld R, Zinner S, Klastersky J et al (1994) Factors associated with bacteraemia in febrile, granulocytopenic patients. The International Antimicrobial Therapy Cooperative Group (IATCG) of the European Organization for Research and Treatment of Cancer (EORTC). Eur J Cancer 30:430–437

    Google Scholar 

  • Walz A, Dewald B, von Tscharner V, Baggiolini M (1989) Effects of neutrophil-activating peptide NAP-2, platelet basic protein, connective tissue-activating peptide III, and platelet factor 4 on human neutrophils. J Exp Med 170:1745–1750

    PubMed  CAS  Google Scholar 

  • Weksler BB (1992) Platelets. In: Gallin J, Goldstein I, Snyderman R (eds) Inflammation: basic principles and clinical correlates, 2nd edn. Raven, New York, pp

    Google Scholar 

  • Wilson M, Blum R, Dandona P, Mousa S (2001) Effects in humans of intravenously administered endotoxin on soluble cell-adhesion molecule and inflammatory markers: a model of human diseases. Clin Exp Pharmacol Physiol 28:376–380

    PubMed  CAS  Google Scholar 

  • Wu T, Yeaman MR, Bayer AS (1994) In vitro resistance to platelet microbicidal protein correlates with endocarditis source among staphylococcal isolates. Antimicrob Agents Chemother 38:729–732

    PubMed  CAS  Google Scholar 

  • Weidenmaier C, Peschel A, Xiong YQ, Kristian SA, Dietz K, Yeaman MR, Bayer AS (2005) Lack of wall teichoic acids in Staphylococcus aureus leads to reduced interactions with endothelial cells and to attenuated virulence in a rabbit model of endocarditis. J Infect Dis 191:1771–1777

    PubMed  CAS  Google Scholar 

  • Xiong YQ, Yeaman MR, Bayer AS (1999) In vitro antibacterial activities of platelet microbicidal protein and neutrophil defensin against Staphylococcus aureus are influenced by antibiotics differing in mechanism of action. Antimicrob Agents Chemother 43:1111–1117

    PubMed  CAS  Google Scholar 

  • Xiong YQ, Bayer AS, Yeaman MR (2002) Inhibition of Staphylococcus aureus intracellular macromolecular synthesis by thrombin-induced platelet microbicidal proteins. J Infect Dis 185:348–356

    PubMed  CAS  Google Scholar 

  • Xiong YQ, Bayer AS, Yeaman MR, van Wamel W, Cheung AL (2004) Impact of sarA and agr in Staphylococcus aureus upon fibronectin-binding protein A gene expression and fibronectin adherence capacity in vitro and in experimental infective endocarditis. Infect Immun 72:1832–1836

    PubMed  CAS  Google Scholar 

  • Xiong YQ, Mukhopadhyay K, Yeaman MR, Adler-Moore J, Bayer AS (2005) Functional interrelationships between cell membrane and wall in antimicrobial peptidemediated killing of Staphylococcus aureus. Antimicrob Agents Chemother 49:3114–3121

    PubMed  CAS  Google Scholar 

  • Yamamoto Y, Klein TW, Friedman H (1997) Involvement of mannose receptor in cytokine interleukin-1beta (IL-1beta), IL-6, and granulocyte-macrophage colony-stimulating factor responses, but not in chemokine macrophage inflammatory protein 1beta (MIP-1beta), MIP-2, and KC responses, caused by attachment of Candida albicans to macrophages. Infect Immun 65:1077–1082

    PubMed  CAS  Google Scholar 

  • Yang D, Chertov O, Bykovskaia SN, Chen Q, Buffo MJ, Shogan J, Anderson M, Schroder JM, Wang JM, Howard OM, Oppenheim JJ (1999) Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286:525–528

    PubMed  CAS  Google Scholar 

  • Yang D, Chen Q, Hoover DM, Staley P, Tucker KD, Lubkowski J, Oppenheim JJ (2003) Many chemokines including CCL20/MIP-3alpha display antimicrobial activity. J Leukoc Biol 74:448–455

    PubMed  CAS  Google Scholar 

  • Yeaman MR (1997) The role of platelets in antimicrobial host defense. Clin Infect Dis 25:951–970

    PubMed  CAS  Google Scholar 

  • Yeaman MR (2004) Antimicrobial peptides fromplatelets in defense against cardiovascular infections. In: Devine DA, Hancock REW (eds.) Mammalian host defense peptides. Adv Mol Cell Micro. Cambridge University Press, Cambridge, pp 279–322

    Google Scholar 

  • Yeaman MR, Bayer AS (1999) Antimicrobial peptides from platelets. Drug Resist. Updates 2:116–26

    CAS  Google Scholar 

  • Yeaman MR, Bayer AS (2000) Staphylococcus aureus, platelets, and the heart. Curr Infect Dis Rep 2:281–298

    PubMed  Google Scholar 

  • Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharm Rev 54:27–55

    Google Scholar 

  • Yeaman MR, Yount NY (2005) Code among chaos: immunorelativity and the AEGIS model of antimicrobial peptides. ASM News 71:21–27

    Google Scholar 

  • Yeaman MR, Norman DC, Bayer AS (1992) Platelet microbicidal protein enhances antibiotic-induced killing of and post-antibiotic effect in Staphylococcus aureus. Antimicrob Agents Chemother 36:1665–1670

    PubMed  CAS  Google Scholar 

  • Yeaman MR, Ibrahim A, Filler SG, Bayer AS, Edwards JE Jr, Ghannoum MA (1993) Thrombin-induced rabbit platelet microbicidal protein is fungicidal in vitro. Antimicrob Agents Chemother 37:546–553

    PubMed  CAS  Google Scholar 

  • Yeaman MR, Sullam PM, Dazin PF, Ghannoum MA, Edwards JE Jr, Bayer AS (1994a) Fluconazole and platelet microbicidal protein inhibit Candida adherence to platelets in vitro. Antimicrob Agents Chemother 38:1460–1465

    PubMed  CAS  Google Scholar 

  • Yeaman MR, Sullam PM, Dazin PF, Bayer AS (1994b) Platelet microbicidal protein alone and in combination with antibiotics reduces Staphylococcus aureus adherence to platelets in vitro. Infect Immun 62:3416–3423

    PubMed  CAS  Google Scholar 

  • Yeaman MR, Soldan SS, Ghannoum MA, Edwards JE Jr, Filler SG, Bayer AS (1996) Resistance to platelet microbicidal protein results in increased severity of experimental Candida albicans endocarditis. Infect Immun 64:1379–1384

    PubMed  CAS  Google Scholar 

  • Yeaman MR, Tang Y-Q, Shen AJ, Bayer AS, Selsted ME (1997) Purification and in vitro activities of rabbit platelet microbicidal proteins. Infect Immun 65:1023–1031

    PubMed  CAS  Google Scholar 

  • Yeaman MR, Bayer AS, Koo SP, Foss W, Sullam PM (1998) Platelet microbicidal proteins and neutrophil defensin disrupt the Staphylococcus aureus cytoplasmic membrane by distinct mechanisms of action. J Clin Invest 101:178–187

    PubMed  CAS  Google Scholar 

  • Yeaman MR, Gank KD, Bayer AS, Brass EP (2002) Synthetic peptides that exert antimicrobial activities in whole blood and blood-derived matrices. Antimicro Agents Chemother 46:3883–3891

    CAS  Google Scholar 

  • Yount NY, Gank KD, Xiong YQ, Bayer AS, Pender T, Welch WH, Yeaman MR (2004) Platelet microbicidal protein-1: structural themes of a multifunctional antimicrobial peptide. Antimicrob Agents Chemother 48:4395–4404

    PubMed  CAS  Google Scholar 

  • Zaiou M, Nizet V, Gallo RL (2003) Antimicrobial and protease inhibitory functions of the human cathelicidin (hCAP18/LL-37) prosequence. J Invest Dermatol 120:810–816

    PubMed  CAS  Google Scholar 

  • Zanetti M (2004) Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol 75:39–48

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yeaman, M.R., Bayer, A.S. (2006). Antimicrobial Peptides Versus Invasive Infections. In: Shafer, W.M. (eds) Antimicrobial Peptides and Human Disease. Current Topics in Microbiology and Immunology, vol 306. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-29916-5_5

Download citation

Publish with us

Policies and ethics