Skip to main content

Protein Aggregation as a Cause for Disease

  • Chapter
Molecular Chaperones in Health and Disease

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 172))

Abstract

The ability of proteins to fold into a defined and functional conformation is one of the most fundamental processes in biology. Certain conditions, however, initiate misfolding or unfolding of proteins. This leads to the loss of functional protein or it can result in a wide range of diseases. One group of diseases, which includes Alzheimer’s, Parkinson’s, Huntington’s disease, and the transmissible spongiform encephalopathies (prion diseases), involves deposition of aggregated proteins. Normally, such protein aggregates are not found in properly functioning biological systems, because a variety of mechanisms inhibit their formation. Understanding the nature of these protective mechanisms together with the understanding of factors reducing or deactivating the natural protection machinery will be crucial for developing strategies to prevent and treat these disastrous diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguzzi A, Haass C (2003) Games played by rogue proteins in prion disorders and Alzheimer’s disease. Science 302:814–818

    Article  PubMed  CAS  Google Scholar 

  • Alberch J, Perez-Navarro E, Canals JM (2004) Neurotrophic factors in Huntington’s disease. Prog Brain Res 146:195–229

    Article  PubMed  CAS  Google Scholar 

  • Avila J (2000) Tau aggregation into fibrillar polymers: taupathies. FEBS Lett 476:89–92

    Article  PubMed  CAS  Google Scholar 

  • Bates G (2003) Huntingtin aggregation and toxicity in Huntington’s disease. Lancet 361:1642–1644

    Article  PubMed  CAS  Google Scholar 

  • Beissinger M, Buchner J (1998) How chaperones fold proteins. Biol Chem. 379:245–259

    PubMed  CAS  Google Scholar 

  • Bence NF, Sampat RM, Kopito RR (2001) Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292:1552–1555

    Article  PubMed  CAS  Google Scholar 

  • Berke SJ, Paulson HL (2003) Protein aggregation and the ubiquitin proteasome pathway: gaining the UPPer hand on neurodegeneration. Curr Opin Genet Dev 13:253–261

    Article  PubMed  CAS  Google Scholar 

  • Braun BC, Glickman M, Kraft R et al (1999) The base of the proteasome regulatory particle exhibits chaperone-like activity. Nat Cell Biol 1:221–226

    Article  PubMed  CAS  Google Scholar 

  • Bruce ME (2000) ‘New variant’ Creutzfeldt-Jakob disease and bovine spongiform encephalopathy. Nat Med 6:258–259

    Article  PubMed  CAS  Google Scholar 

  • Budka H, Aguzzi A, Brown P, et al (1995) Neuropathological diagnostic criteria for Creutzfeldt-Jakob disease (CJD) and other human spongiform encephalopathies (prion diseases). Brain Pathol 5:459–466

    PubMed  CAS  Google Scholar 

  • Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92:351–366

    Article  PubMed  CAS  Google Scholar 

  • Butterfield DA, Kanski J (2001) Brain protein oxidation in age-related neurodegenerative disorders that are associated with aggregated proteins. Mech Aging Dev 122:945–962

    Article  PubMed  CAS  Google Scholar 

  • Carrell RW, Lomas DA (1997) Conformational disease. Lancet 350:134–138

    Article  PubMed  CAS  Google Scholar 

  • Carrell RW, Lomas DA (2002) Alpha1-antitrypsin deficiency: a model for conformational diseases. N Engl J Med 346:45–53

    Article  PubMed  CAS  Google Scholar 

  • Caughey B, Lansbury PT (2003) Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates fromthe innocent bystanders. Annu RevNeurosci 26:267–298

    CAS  Google Scholar 

  • Clark JI, Muchowski PJ (2000) Small heat-shock proteins and their potential role in human disease. Curr Opin Struct Biol 10:52–59

    Article  PubMed  CAS  Google Scholar 

  • Collinge J (1999) Variant Creutzfeldt-Jakob disease. Lancet 354:317–323

    Article  PubMed  CAS  Google Scholar 

  • Collinge J (2001) Prion diseases of humans and animals: their causes and molecular basis. Annu Rev Neurosci 24:519–550

    Article  PubMed  CAS  Google Scholar 

  • Damas AM, Saraiva MJ (2000) Review: TTR amyloidosis-structural features leading to protein aggregation and their implications on therapeutic strategies. J Struct Biol 130:290–299

    Article  PubMed  CAS  Google Scholar 

  • Dawson TM, Dawson VL (2003) Rare genetic mutations shed light on the pathogenesis of Parkinson disease. J Clin Invest 111:145–151

    Article  PubMed  CAS  Google Scholar 

  • Deyoung LR, Fink AL, Dill KA (1993) Aggregation of globular proteins. Acc Chem Res 26:614–620

    CAS  Google Scholar 

  • Dickson DW, Crystal HA, Bevona C et al (1995) Correlations of synaptic and pathological markers with cognition of the elderly. Neurobiol Aging 16:285–298

    PubMed  CAS  Google Scholar 

  • Dobson CM (2001) The structural basis of protein folding and its links with human disease. Philos Trans R Soc Lond B Biol Sci 356:133–145

    PubMed  CAS  Google Scholar 

  • Dobson CM (2004) Principles of protein folding, misfolding and aggregation. Semin Cell Dev Biol 15:3–16

    Article  PubMed  CAS  Google Scholar 

  • Dukan S, Farewell A, Ballestros M et al (2000) Protein oxidation in response to increased transcriptional or translational errors. Proc. Natl Acad Sci U S A 97:5746–5749

    Article  PubMed  CAS  Google Scholar 

  • Eanes ED, Glenner GG (1968) X-ray diffraction studies on amyloid filaments. J Histochem Cytochem 16: 673–677

    PubMed  CAS  Google Scholar 

  • Fink AL (1998) Protein aggregation: folding aggregates, inclusion bodies and amyloid. Fold Des 3:R9–R23

    Article  PubMed  CAS  Google Scholar 

  • Forloni G, Terreni L, Bertani I et al (2002) Protein misfolding in Alzheimer’s and Parkinson’s disease: genetics and molecular mechanisms. Neurobiol Aging 23:957–976

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Mata R, Bebok Z, Sorscher EJ, Sztul ES (1999) Characterization and dynamics of aggresome formation by a cytosolic GFP-chimera. J Cell Biol 146:1239–1254

    Article  PubMed  CAS  Google Scholar 

  • Geddes AJ, Parker KD, Atkins ED, Beighton E (1968) “Cross-beta” conformation in proteins. J Mol Biol 32:343–358

    Article  PubMed  CAS  Google Scholar 

  • Glabe CG (2004) Conformation-dependent antibodies target diseases of protein misfolding. Trends Biochem Sci 29:542–547

    Article  PubMed  CAS  Google Scholar 

  • Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82:373–428

    PubMed  CAS  Google Scholar 

  • Glover JR, Lindquist S (1998) Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94:73–82

    Article  PubMed  CAS  Google Scholar 

  • Goldberg ME, Rudolph R, Jaenicke R (1991) A kinetic study of the competition between renaturation and aggregation during the refolding of denatured-reduced egg white lysozyme. Biochemistry 30:2790–2797

    PubMed  CAS  Google Scholar 

  • Gregersen N, Bolund L, Bross P (2003) Protein misfolding, aggregation, and degradation in disease. Methods Mol Biol 232:3–16

    PubMed  CAS  Google Scholar 

  • Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571–579

    Article  PubMed  CAS  Google Scholar 

  • Hartley DM, Walsh DM, Ye CP et al (1999) Protofibrillar intermediates of amyloid betaprotein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. J Neurosci 19:8876–8884

    PubMed  CAS  Google Scholar 

  • Hetz C, Soto C (2003) Protein misfolding and disease: the case of prion disorders. Cell Mol Life Sci 60: 133–143

    PubMed  CAS  Google Scholar 

  • Horwich AL (2004) Chaperoned protein disaggregation-the ClpB ring uses its central channel. Cell 119: 579–581

    Article  PubMed  CAS  Google Scholar 

  • Horwich A (2002) Protein aggregation in disease: a role for folding intermediates forming specific multimeric interactions. J Clin Invest 110:1221–1232

    Article  PubMed  CAS  Google Scholar 

  • Ironside JW, Bell JE (1997) Pathology of prion diseases In: Collinge J, Palmer MS (eds) Prion diseases. Oxford University Press, Oxford, pp 57–88

    Google Scholar 

  • Ishimaru D, Andrade LR, Teixeira LS et al (2003) Fibrillar aggregates of the tumour suppressor p53 core domain. Biochemistry 42:9022–9027

    Article  PubMed  CAS  Google Scholar 

  • Jaenicke R (1995) Folding and association versus misfolding and aggregation of proteins. Philos Trans R Soc Lond B Biol Sci 348:97–105

    PubMed  CAS  Google Scholar 

  • Johnson RT, Gibbs CJ (1998) Creutzfeldt-Jakob disease and related transmissible spongiform encephalopathies. N Engl J Med 339:1994–2004

    PubMed  CAS  Google Scholar 

  • Johansson J, Weaver TE, Tjernberg LO (2004) Proteolytic generation and aggregation of peptides from transmembrane regions: lung surfactant protein C and amyloid betapeptide. Cell Mol Life Sci 61:326–335

    PubMed  CAS  Google Scholar 

  • Johnston JA, Ward CL, Kopito RR (1998) Aggresomes: a cellular response to misfolded proteins. J Cell Biol 143:1883–1898

    Article  PubMed  CAS  Google Scholar 

  • Kayed R, Head E, Thompson JL et al (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:486–489

    Article  PubMed  CAS  Google Scholar 

  • Kelly J (1998) Alternative conformation of amyloidogenic proteins and their multi-step assembly pathways. Curr Opin Struct Biol 8:101–106

    Article  PubMed  CAS  Google Scholar 

  • Kiefhaber T, Rudolph R, Kohler H-H, Buchner J (1991) Protein aggregation in vitro and in vivo: a quantitative model of the kinetic competition between folding and aggregation. Nat Biotechnol 9:825–829

    Article  CAS  Google Scholar 

  • Kielty CM, Shuttleworth CA (1994) Abnormal fibrillin assembly by dermal fibroblasts from two patients with Marfan syndrome. J Cell Biol 124:997–1004

    Article  PubMed  CAS  Google Scholar 

  • Kopito RR (2000) Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol 10:524–530

    Article  PubMed  CAS  Google Scholar 

  • Kopito RR, Sitia R (2000) Aggresomes and Russell bodies. Symptoms of cellular indigestion? EMBO Rep 1: 225–231

    Article  PubMed  CAS  Google Scholar 

  • Krawczak M, Chuzhanova NA, Stenson PD et al (2000) Changes in primary DNA sequence complexity influence the phenotypic consequences of mutations in human gene regulatory regions. Hum Genet 107:362–365

    Article  PubMed  CAS  Google Scholar 

  • Kuemmerle S, Gutekunst CA, Klein AM et al (1999) Huntington aggregates may not predict neuronal death in Huntington’s disease. Ann Neurol 46:842–849

    Article  PubMed  CAS  Google Scholar 

  • Lange C, Rudolph R (2005) Production of recombinant proteins for therapy, diagnostics, and industrial research by in vitro folding. In: Buchner J, Kiefhaber T (eds) Protein folding handbook. Vol. 3. Wiley, Weinheim, pp 1245–1280

    Google Scholar 

  • Lansbury PT (1999) Evolution of amyloid: what normal protein folding may tell us about fibrillogenesis and disease. Proc Natl Acad Sci U S A 96:3342–3344

    Article  PubMed  CAS  Google Scholar 

  • Layfield R, Cavey JR, Lowe J (2003) Role of ubiquitin-mediated proteolysis in the pathogenesis of neurodegenerative disorders. Ageing Res Rep 2:343–356

    CAS  Google Scholar 

  • Lee S, Sowa ME, Choi JM, Tsai FT (2004) The ClpB/Hsp104 molecular chaperone-a protein disaggregating machine. J Struct Biol 146:99–105

    Article  PubMed  CAS  Google Scholar 

  • Lomas DA, Evans DL, Finch JT, Carrell RW (1992) The mechanism of Z alpha 1-antitrypsin accumulation in the liver. Nature 357:605–607

    Article  PubMed  CAS  Google Scholar 

  • Lorenzo A, Yankner BA (1994) Beta-amyloid neurotoxicity requires fibril formation and is inhibited by Congo red. Proc Natl Acad Sci U S A 91:12243–12247

    PubMed  CAS  Google Scholar 

  • Mancini R, Fagioli C, Fra AM, Maggioni C, Sitia R (2000) Degradation of unassembled soluble Ig subunits by cytosolic proteasomes: evidence that retro translocation and degradation are coupled events. FASEB J 14: 769–778

    PubMed  CAS  Google Scholar 

  • Mathew A, Morimoto RI (1998) Role of the heat-shock response in the life and death of proteins. Ann N Y Acad Sci 851:99–111

    PubMed  CAS  Google Scholar 

  • Maurizi MR, Xia D (2004) Protein binding and disruption by Clp/Hsp100 chaperones. Structure 12:175–183

    Article  PubMed  CAS  Google Scholar 

  • Mayer M, Buchner J (2004) Refolding of inclusion body proteins. Methods Mol Med 94:239–254

    PubMed  CAS  Google Scholar 

  • McLean CA, Cherny RA, Fraser FW et al (1999) Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disea. Ann Neurol 46:860–866

    Article  PubMed  CAS  Google Scholar 

  • Merlini G, Bellotti V, Andreola A et al (2001) Protein aggregation. Clin Chem Lab Med 39:1065–1075

    PubMed  CAS  Google Scholar 

  • Mogk A, Tomoyasu T, Goloubinoff P et al (1999) Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB. EMBO J 18:6934–6949

    Article  PubMed  CAS  Google Scholar 

  • Nishio I, Tanaka T, Sun ST et al (1983) Hemoglobin aggregation in single red blood cells of sickle cell anemia. Science 220:1173–1175

    PubMed  CAS  Google Scholar 

  • Perutz MF (1999) Glutamine repeats and neurodegenerative diseases: molecular aspects. Trends Biochem Sci 24: 58–63

    Article  PubMed  CAS  Google Scholar 

  • Pollanen MS, Dickson DW, Bergeron C (1993) Pathology and biology of the Lewy body. J Neuropathol Exp Neurol 52:183–191

    PubMed  CAS  Google Scholar 

  • Preudhomme C, Vachee A, Morschauser F et al (1994) Immunoglobulin and T-cell receptor delta gene rearrangements are rarely found in myelodysplastic syndromes in chronic phase. Leuk Res 18:365–371

    PubMed  CAS  Google Scholar 

  • Prusiner SB (1998) Prions. Proc Natl Acad Sci U S A 95:13363–13383

    Article  PubMed  CAS  Google Scholar 

  • Prusiner SB, Scott MR (1997) Genetics of prions. Annu Rev Genet 31:139–175

    Article  PubMed  CAS  Google Scholar 

  • Queitsch C, Hong SW, Vierling E, Lindquist S (2000) Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell 12:479–492

    Article  PubMed  CAS  Google Scholar 

  • Rochet JC, Lansbury PT (2000) Amyloid fibrillogenesis: themes and variations. Curr Opin Struct Biol 10: 60–68

    Article  PubMed  CAS  Google Scholar 

  • Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nat Med 10 Suppl:S10–S17

    Article  PubMed  CAS  Google Scholar 

  • Sakahira H, Breuer P, Hayer-Hartl MK, Hartl FU (2002) Molecular chaperones asmodulators of polyglutamine protein aggregation and toxicity. Proc Natl Acad Sci U S A 99[Suppl 4]:16412–16418

    PubMed  CAS  Google Scholar 

  • Sanchez I, Mahlke C, Yuan J (2003) Pivotal role of oligomerization in expanded polyglutamine neurodegenerative disorders. Nature 421:373–379

    PubMed  CAS  Google Scholar 

  • Sandilands A, Hutcheson AM, Long HA et al (2002) Altered aggregation properties of mutant gamma-crystallins cause inherited cataract. EMBO J 21:6005–6014

    Article  PubMed  CAS  Google Scholar 

  • Scheibel T (2004) Amyloid formation of a yeast prion determinant. J Mol Neurosci 23:13–22

    PubMed  CAS  Google Scholar 

  • Scheibel T, Serpell L (2005) Physical methods for studies of fibre formation and structure. In: Buchner J, Kiefhaber T (eds) Protein folding handbook. Vol. 3. Wiley, Weinheim, pp 197–253

    Google Scholar 

  • Sharon R, Bar-Joseph I, Frosch MP et al (2003) The formation of highly soluble oligomers of alpha-synuclein is regulated by fatty acids and enhanced in Parkinson’s disease. Neuron 37:583–595

    Article  PubMed  CAS  Google Scholar 

  • Sherman MY, Goldberg AL (2001) Cellular defences against unfolded proteins: a cell biologist thinks about neurodegenerative diseases. Neuron 29:15–32

    Article  PubMed  CAS  Google Scholar 

  • Small DH, Mok SS, Bornstein JC (2001) Alzheimer’s disease and Abeta toxicity: from top to bottom. Nat Rev Neurosci 2:595–598

    Article  CAS  Google Scholar 

  • Soti C, Csermely P (2000) Molecular chaperones and the aging process. Biogerontology 1:225–233

    Article  PubMed  CAS  Google Scholar 

  • Speed MA, Wang DIC, King J (1996) Specific aggregation of partially folded polypeptide chains-the molecular basis of inclusion body composition. Nat Biotechnol 14:1283–1287

    Article  PubMed  CAS  Google Scholar 

  • Stirling PC, Lundin VF, Leroux MR (2003) Getting a grip on non-native proteins. EMBO Rep 4:565–570

    Article  PubMed  CAS  Google Scholar 

  • Stojanovic A, Hwang I, Khorana HG, Hwa J (2003) Retinitis pigmentosa rhodopsin mutations L125R and A164 V perturb critical interhelical interactions: new insights through compensatory mutations and crystal structure analysis. J Biol Chem 278:39020–39028

    Article  PubMed  CAS  Google Scholar 

  • Sunde M, Blake C (1997) The structure of amyloid fibrils by electron microscopy and X-ray diffraction. Adv Protein Chem 50:123–159

    PubMed  CAS  Google Scholar 

  • Taylor JP, Hardy J, Fischbeck KH (2002) Toxic proteins in neurodegenerative disease. Science 296: 1991–1995

    PubMed  CAS  Google Scholar 

  • Tennent GA, Lovat LB, Pepys MB (1995). Serum amyloid P component prevents proteolysis of the amyloid fibrils of Alzheimer disease and systemic amyloidosis. Proc Natl Acad Sci U S A 92:4299–4303

    PubMed  CAS  Google Scholar 

  • Teplow DB (1998) Structural and kinetic features of amyloid beta-protein fibrillogenesis. Amyloid 5: 121–142

    PubMed  CAS  Google Scholar 

  • Terry RD, Masliah E, Salmon DP et al (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580

    Article  PubMed  CAS  Google Scholar 

  • Thakur AK, Wetzel R (2002) Mutational analysis of the structural organization of polyglutamine aggregates. Proc Natl Acad Sci U S A 99:17014–17019

    Article  PubMed  CAS  Google Scholar 

  • Tooze J, Hollinshead M, Ludwig T et al (1990) In exocrine pancreas, the basolateral endocytic pathway converges with the autophagic pathway immediately after the early endosome. J Cell Biol 111:329–345

    Article  PubMed  CAS  Google Scholar 

  • Uversky VN (2003) Protein folding revisited. A polypeptide chain at the folding-misfolding-non folding cross-roads: which way to go? Cell Mol Life Sci. 60:1852–1871

    Article  PubMed  CAS  Google Scholar 

  • Uversky VN, Lee HJ, Li J et al (2001) Stabilisation of partially folded conformation during alpha synuclein oligomerization in both purified and cytosolic preparations. J Biol Chem 276:43495–43498

    PubMed  CAS  Google Scholar 

  • Volles MJ, Lee SJ, Rochet JC et al (2001) Vesicle permeabilization by protofibrillar alphasynuclein: implications for the pathogenesis and treatment of Parkinson’s disease. Biochemistry 40:7812–7819

    Article  PubMed  CAS  Google Scholar 

  • Walter S, Buchner J (2002) Molecular chaperones-cellular machines for protein folding. Angew Chem Int Ed Engl 41:1098–1113

    Article  PubMed  CAS  Google Scholar 

  • Wanker EE (2000) Protein aggregation and pathogenesis of Huntington’s disease: mechanisms and correlations. Biol Chem 381:937–942

    Article  PubMed  CAS  Google Scholar 

  • Weihofen A, Binns K, Lemberg MK et al (2002) Identification of signal peptide peptidase, a presenilin-type aspartic protease. Science 296:2215–2218

    Article  PubMed  CAS  Google Scholar 

  • Weissman AM (2001) Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol 2:169–178

    Article  PubMed  CAS  Google Scholar 

  • Wigley WC, Fabunmi RP, Lee MG et al (1999) Dynamic association of proteasomal machinery with the centrosome. J Cell Biol 145:481–490

    PubMed  CAS  Google Scholar 

  • Wille H, Zhang GF, Baldwin MA et al (1996) Separation of scrapie prion infectivity from PrP amyloid polymers. J Mol Biol 259:608–621

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Whitman I, Molmenti E et al (1994) A lag in intracellular degradation ofmutant alpha 1-antitrypsin correlates with the liver disease phenotype in homozygous PiZZ alpha 1-antitrypsin deficiency. Proc Natl Acad Sci U S A 91: 9014–9018

    PubMed  CAS  Google Scholar 

  • Yankner BA, Caceres A, Duffy LK (1990) Nerve growth factor potentiates the neurotoxicity of beta amyloid. Proc Natl Acad Sci U S A 87:9020–9023

    PubMed  CAS  Google Scholar 

  • Yao T, Cohen RE (2002) A cryptic protease couples deubiquitination and degradation by the proteasome. Nature 419:403–407

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, McLaughlin R, Goodyer C, LeBlanc A (2002) Selective cytotoxicity of intracellular amyloid beta peptide1-42 through p53 and Bax in cultured primary human neurons. J Cell Biol 156:519–529

    Article  PubMed  CAS  Google Scholar 

  • Zoghbi HY, Botas J (2002) Mouse and fly models of neurodegeneration. Trends Genet 18:463–471

    Article  PubMed  CAS  Google Scholar 

  • Zwickl P, Seemuller E, Kapelari B, Baumeister W (2001) The proteasome: a supramolecular assembly designed for controlled proteolysis. Adv Protein Chem 59:187–222

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Buchner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Scheibel, T., Buchner, J. (2006). Protein Aggregation as a Cause for Disease. In: Starke, K., Gaestel, M. (eds) Molecular Chaperones in Health and Disease. Handbook of Experimental Pharmacology, vol 172. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29717-0_9

Download citation

Publish with us

Policies and ethics