Skip to main content

Construction of Redox-Induced Systems Using Antigen-Combining Sites of Antibodies and Functionalization of Antibody Supramolecules

  • Chapter
Redox Systems Under Nano-Space Control

Summary

We have prepared monoclonal antibodies against water-soluble porphyrins or viologen derivatives. The specific binding of monoclonal antibodies toporphyrins was found to control photoinduced electron transfer from porphyrin to electron acceptor molecules. One of the antibodies against a cationic porphyrin bound Fe-porphyrin strongly, and the complex of Fe-porphyrin with the antibody showed peroxidase activity. We expanded our study to include the construction of antibody supramolecules using their specific molecular recognition to antigens. We constructed dendritic antibody supramolecules. An amplification method of the detection signals for the target molecule in the biosensors based on the surface plasmon resonance (SPR) was devised using the signal enhancement in the supramolecular assembly of the antibody with multivalent antigens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

16.7 References

  1. Pauling L (1948) Am Sci 36:51

    CAS  Google Scholar 

  2. Pollack SJ, Jacobs JW, Schultz PG (1986) Science 234:1570

    CAS  Google Scholar 

  3. Tramontano A, Janda KD, Lerner RA (1986) Science 234:1566

    CAS  Google Scholar 

  4. Kohler G, Milstein C (1975) Nature 256:495

    Article  CAS  Google Scholar 

  5. Harada A, Yamaguchi H, Okamoto K, Fukushima H, Shiotsuki K, Kamachi M (1999) Photochem Photobiol 70:298

    Article  CAS  Google Scholar 

  6. Yamaguchi H, Kamachi M, Harada A (2000) Angew Chem Int Ed 39:3829

    Article  CAS  Google Scholar 

  7. Yamaguchi H, Tsubouchi K, Kawaguchi K, Horita E, Harada A (2004) Chem Eur J 10:6179

    Article  CAS  Google Scholar 

  8. Harada A, Yamaguchi H, Tsubouchi K, Horita E (2003) Chem Lett 32:18

    Article  CAS  Google Scholar 

  9. Yamaguchi H, Harada A (2002) Biomacromolecules 3:1163

    Article  CAS  Google Scholar 

  10. Yamaguchi H, Harada A (2003) Top Curr Chem 228:237

    Article  CAS  Google Scholar 

  11. Dolphin D (1978) The Porphyrins. Academic, New York

    Google Scholar 

  12. Kadish KM, Smith KM, Guilard R (1999) The Porphyrin Handbook. Academic, San Diego

    Google Scholar 

  13. Reedy CJ, Gibney BR (2004) Chem Rev 104:617

    Article  CAS  Google Scholar 

  14. Lombardi A, Nastri F, Pavone V (2001) Chem Rev 101:3165

    Article  CAS  Google Scholar 

  15. Mofft DA, Hecht MH (2001) Chem Rev 101:3191

    Article  CAS  Google Scholar 

  16. Rau HK, Haehne lW (1998) J Am Chem Soc 120:468

    Article  CAS  Google Scholar 

  17. Takahashi M, Ueno A, Mihara H (2000) Chem Eur J 6:3196

    Article  CAS  Google Scholar 

  18. Mofft DA, Certain LK, Smith AJ, Kassel AJ, Beckwith KA, Hecht MH (2000) J AmChem Soc 122:7612

    Article  CAS  Google Scholar 

  19. Lu Y, Berry SM, Plister TD (2001) Chem Rev 101:3047

    Article  CAS  Google Scholar 

  20. Watanabe Y (2002) Curr Opin Chem Biol 6:208

    Article  CAS  Google Scholar 

  21. Hayashi T, Takimura T, Ogoshi H (1995) J Am Chem Soc 117:11606

    Article  CAS  Google Scholar 

  22. Hamachi I, Tanaka S, Tsukiji S, Shinkai S, Shimizu M, Nagamune T (1997) J Chem Soc Chem Commun 1735

    Google Scholar 

  23. Hu YZ, Tsukiji S, Shinkai S, Oishi S, Hamachi I (2000) J Am Chem Soc 122:241

    Article  CAS  Google Scholar 

  24. Hayashi T, Hisaeda Y (2002) Acc Chem Res 35:35

    Article  CAS  Google Scholar 

  25. Pollack SJ, Nakayama GR, Schultz PG (1988) Science 242:1038

    CAS  Google Scholar 

  26. Pollack SJ, Schultz PG (1989) J Am Chem Soc 111:1929

    Article  CAS  Google Scholar 

  27. Schwabacher AW, Weinhouse MI, Auditor M-TM, Lerner RA (1989) J Am Chem Soc 111:2344

    Article  CAS  Google Scholar 

  28. Harada A, Okamoto K, Kamachi M, Honda T, Miwatani T (1990) Chem Lett 1990:917

    Article  Google Scholar 

  29. Cochran AG, Schultz PG (1990) J Am Chem Soc 112:9414

    Article  CAS  Google Scholar 

  30. Cochran AG, Schultz PG (1990) Science 249:781

    CAS  Google Scholar 

  31. Harada A, Okamoto K, Kamachi M (1991) Chem Lett 1991:953

    Article  Google Scholar 

  32. Keinan E, Benory E, Sinha SC, Shinha-Bagchi A, Eren D, Eshhar Z, Green BS (1992) Inorg Chem 31:5433

    Article  CAS  Google Scholar 

  33. Harada A, Shiotsuki K, Fukushima H, Yamaguchi H, Kamachi M (1995) Inorg Chem 34:1070

    Article  CAS  Google Scholar 

  34. Harada A, Fukushima H, Shiotsuki K, Yamaguchi H, Oka F, Kamachi M (1997) Inorg Chem 36:6099

    Article  CAS  Google Scholar 

  35. Liou HH, Tsai MC, Chen CJ, Jeng JS, Chang YC, Chen SY, Chen RC (1997) Neurology 48:1583

    CAS  Google Scholar 

  36. Brooks AI, Chadwick CA, Gelbard HA, Cory-Slechta DA, Federoff HJ (1999) Brain Res 823:1

    Article  CAS  Google Scholar 

  37. Niewola Z, Hayward C, Symington BA, Robson RT (1985) Clinica Chimica Acta 148:149

    Article  CAS  Google Scholar 

  38. Hogg PJ, Johnston SC, Bowles MR, Pond SM, Winzor DJ (1987) Mol Immun 24:797

    Article  CAS  Google Scholar 

  39. Bowles MR, Pond SM (1990) Mol Immun 27:847

    Article  CAS  Google Scholar 

  40. Bowles MR, Hall DR, Pond SM, Winzor DJ (1997) Anal Biochem 244:133

    Article  CAS  Google Scholar 

  41. Yamaguchi H, Harada A (2002) Chem Lett 2002:382

    Article  Google Scholar 

  42. Watanabe T, Honda K (1982) J Phys Chem 86:2617

    Article  CAS  Google Scholar 

  43. Sadamoto R, Tomioka N, Aida T (1996) J Am Chem Soc 118:3978

    Article  CAS  Google Scholar 

  44. Nimri S, Keinan E (1999) J Am Chem Soc 121:8978

    Article  CAS  Google Scholar 

  45. Ward B, Skorobogaty A, Dabrowiak JC (1986) Biochemistry 25:6875

    Article  CAS  Google Scholar 

  46. Pasternack RF, Halliwell B (1979) J Am Chem Soc 101:1026

    Article  CAS  Google Scholar 

  47. Yamaguchi H, Harada A (2003) In: Ueyama N, Harada A (eds) Macromolecular Nano-Structured Materials. Springer, Berlin Heidelberg New York

    Google Scholar 

  48. Harada A, Yamaguchi H, Kamachi M (1997) Chem Lett 1997:1141

    Article  Google Scholar 

  49. Rich RL, Myszka DG (2003) J Mol Recog 16:351

    Article  CAS  Google Scholar 

  50. Niikura K, Nagata K, Okahata Y (1996) Chem Lett 1996:863

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yamaguchi, H., Harada, A. (2006). Construction of Redox-Induced Systems Using Antigen-Combining Sites of Antibodies and Functionalization of Antibody Supramolecules. In: Hirao, T. (eds) Redox Systems Under Nano-Space Control. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29580-1_16

Download citation

Publish with us

Policies and ethics