Advertisement

Remarks concerning concave utility functions on finite sets

  • Yakar Kannai
Conference paper
Part of the Studies in Economic Theory book series (ECON.THEORY, volume 26)

Summary

A direct construction of concave utility functions representing convex preferences on finite sets is presented. An alternative construction in which at first directions of supergradients (“prices”) are found, and then utility levels and lengths of those supergradients are computed, is exhibited as well. The concept of a least concave utility function is problematic in this context.

Keywords and Phrases

Concave utility Finite sets Supergradients Afriat-Varian algorithm Least concavity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Afriat, S.: The construction of utility functions from expenditure data. International Economic Review 6, 76–77 (1967)Google Scholar
  2. 2.
    Debreu, G.: Theory of value. New York: Wiley 1959Google Scholar
  3. 3.
    Debreu, G.: Least concave utility functions. Journal of Mathematical Economics 3, 121–129 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Kannai, Y.: Concavifiability and constructions of concave utility functions. Journal of Mathematical Economics 4, 1–56 (1977)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Kannai, Y.: The ALEP definition of complementarity and least concave utility functions. Journal of Economic Theory 22, 115–117 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Kannai, Y.: Nonstandard concave utility functions. Journal of Mathematical Economics 21, 51–58 (1982)MathSciNetGoogle Scholar
  7. 7.
    Kannai, Y.: When is individual demand concavifiable? Journal of Mathematical Economics 40, 59–69 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Lovász, L.: An algorithmic theory of numbers, graphs and convexity. Philadelphia, CBMS-NSF Regional Conference Series in Applied Mathematics 50, SIAM (1986)Google Scholar
  9. 9.
    Mas-Colell, A.: Continuous and smooth consumers: approximation theorems. Journal of Economic Theory 8, 305–336 (1974)MathSciNetGoogle Scholar
  10. 10.
    Richter, M.K., Wong, K.C.: Concave utility on finite sets. Journal of Economic Theory 115, 341–357 (2004)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Rockafellar R.T.: Convex analysis. Princeton: Princeton University Press 1970Google Scholar
  12. 12.
    Varian, H.R.: The nonparametric approach to demand analysis. Econometrica 50, 945–973 (1982)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yakar Kannai
    • 1
  1. 1.Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations