Identification of consumers’ preferences when their choices are unobservable

  • Rosa L. Matzkin
Conference paper
Part of the Studies in Economic Theory book series (ECON.THEORY, volume 26)


We provide conditions under which the heterogenous, deterministic preferences of consumers in a pure exchange economy can be identified from the equilibrium manifold of the economy. We extend those conditions to consider exchange economies, with two commodities, where consumers’ preferences are random. For the latter, we provide conditions under which consumers’ heterogenous random preferences can be identified from the joint distribution of equilibrium prices and endowments. The results can be applied to infer consumers’ preferences when their demands are unobservable.

Keywords and Phrases

Preferences Random utility Pure exchange economies Identification Equilibrium correpsondence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreu, J.: Rationalization of market demand on finite domain. Journal of Economic Theory 28, 201–204 (1983)Google Scholar
  2. Balasko, Y.: Deriving individual demand functions from the equilibrium manifold. Mimeo, University of Paris I (1999)Google Scholar
  3. Barten, A.P.: Estimating demand equations. Econometrica 36(2), 213–251 (1968)zbMATHMathSciNetGoogle Scholar
  4. Beckert, W.: On specification and identification of stochastic demand models. Mimeo, University of California, Berkeley (2000)Google Scholar
  5. Brown, B.W., Walker, M.B.: The random utility hypothesis and inference in demand systems. Econometrica 57, 815–829 (1989)MathSciNetGoogle Scholar
  6. Brown, D.J., Calsamiglia, C.: The strong law of demand. CFDP # 1399, Cowles Foundation, Yale University 2003Google Scholar
  7. Brown, D.J., Matzkin, R.L.: Recoverability and estimation of the demand and utility functions of traders when demands are unobservable. Mimeo, Yale University (1990)Google Scholar
  8. Brown, D.J., Matzkin, R.L.: Testable restrictions on the equilibrium manifold. Econometrica 64(6), 1249–1262 (1996)Google Scholar
  9. Brown, D.J., Matzkin, R.L.: Estimation of nonparametric functions in simultaneous equations models, with an application to consumer demand. Mimeo, Northwestern University (1998)Google Scholar
  10. Carvajal, A.: Testable restrictions on the equilibrium manifold under random preferences. Mimeo, Brown University (2002)Google Scholar
  11. Chiappori, P.A.: Distribution of income and the ‘Law of Demand’. Econometrica 53, 109–127 (1985)zbMATHMathSciNetGoogle Scholar
  12. Chiappori, P.A., Ekeland, I.: Aggregation and market demand: An exterior differential calculus viewpoint. Econometrica 67, 1435–1458 (1999)CrossRefMathSciNetGoogle Scholar
  13. Chiappori, P.A., Ekeland, I., Kubler, F., Polemarchakis, H.M.: Testable implications of general equilibrium theory: A differentiable approach. Mimeo (2002)Google Scholar
  14. Chipman, J.S.: Homothetic preferences and aggregation. Journal of Economic Theory VIII(1), 26–38 (1974)MathSciNetGoogle Scholar
  15. Diewert, W.E.: Generalized Slutsky conditions for aggregate consumer demand functions. Journal of Economic Theory 15, 353–362 (1977)CrossRefzbMATHMathSciNetGoogle Scholar
  16. Debreu, G.: Excess demand functions. Journal of Mathematical Economics 1, 15–21 (1974)CrossRefzbMATHGoogle Scholar
  17. Dubin, J., McFadden, D.: An econometric analysis of residential electric appliance holdings and consumption. Econometrica 52(2), 345–362 (1974)Google Scholar
  18. Eisenberg, E.: Aggregation of utility functions. Management Science VII(4), 337–350 (1961)Google Scholar
  19. Gorman, W.M.: Community preference fields. Econometrica XXI(1), 63–80 (1953)MathSciNetGoogle Scholar
  20. Grandmont, J.M.: Distribution of preferences and the law of demand. Econometrica 55, 155–161 (1987)zbMATHMathSciNetGoogle Scholar
  21. Grandmont, J.M.: Transformation of the commodity space, behavioral heterogeneity and the aggregation problem. Journal of Economic Theory 57, 1–35 (1992)zbMATHGoogle Scholar
  22. Geanakoplos J.D., Polemarchakis, H.M.: On the disaggregation of excess demand functions. Econometrica 48(2), 315–332 (1980)MathSciNetGoogle Scholar
  23. Heckman, J.J.: Effects of day-care programs on women’s work effort. Journal of Political Economy 822, S136–S163 (1974)Google Scholar
  24. Hildenbrand, W.: On the law of demand. Econometrica 51(4), 997–1020 (1983)zbMATHMathSciNetGoogle Scholar
  25. Lewbel, A.: Exact aggregation and a representative consumer. The Quarterly Journal of Economics 104, 621–633 (1989)Google Scholar
  26. Lewbel, A.: Demand systems with and without errors: Reconciling econometric, random utility, and GARP models. Mimeo, Brandeis University (1996)Google Scholar
  27. Maruenda, F.: Distribution of income and aggregation of demand. Econometrica 63, 647–666 (1995)Google Scholar
  28. Mantel, R.: On the characterization of aggregate excess demand. Journal of Economic Theory 7, 348–353 (1974)CrossRefMathSciNetGoogle Scholar
  29. Mantel, R.: Homothetic preferences and community excess demand functions. Journal of Economic Theory XII(2), 197–201 (1976)MathSciNetGoogle Scholar
  30. Mas-Colell, A.: On the equilibrium price set of an exchange economy. Journal of Mathematical Economics 4, 117–126 (1977a)CrossRefzbMATHMathSciNetGoogle Scholar
  31. Mas-Colell, A.: On the recoverability of consumers’ preferences from market demand behavior. Econometrica 45(6), 1409–1430 (1977b)zbMATHGoogle Scholar
  32. Mas-Colell, A., Neuefeind, W.: Some generic properties of aggregate excess demand and an application. Econometrica 45(3), 591–600 (1977b)MathSciNetGoogle Scholar
  33. Matzkin, R.L.: Nonparametric and distribution-free estimation of the binary choice and the threshold crossing models. Econometrica 60, 239–270 (1992)zbMATHMathSciNetGoogle Scholar
  34. Matzkin, R.L.: Nonparametric identification and estimation of polychotomous choice models. Journal of Econometrics 58, 137–168 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  35. Matzkin, R.L.: Nonparametric estimation of nonadditive random functions. Econometrica 71(5), 1339–1375 (2003)CrossRefMathSciNetGoogle Scholar
  36. McElroy, M.B.: Duality and the error structure in demand systems. Discussion Paper #81-82, Economics Research Center/NORC (1981)Google Scholar
  37. McElroy, M.B.: Additive general error models for production, cost, and derived demand or share systems. Journal of Political Economy 95, 737–757 (1987)Google Scholar
  38. McFadden, D.: Conditional logit analysis of qualitative choice behavior. In: Zarembka, P. (ed.) Frontiers in econometrics. New York: Academic 1974Google Scholar
  39. McFadden, D.: Tchebyscheff bounds for the space of agent characteristics. Journal of Mathematical Economics 2, 225–242 (1975)zbMATHMathSciNetGoogle Scholar
  40. McFadden, D.: Revealed stochastic preferences: A synthesis. Mimeo, University of California, Berkeley (2002)Google Scholar
  41. McFadden, D, Mas-Colell, A., Mantel, R., Richter, M.K.: A characterization of community excess demand functions. Journal of Economic Theory 9(4), 361–374 (1974)CrossRefMathSciNetGoogle Scholar
  42. McFadden, D., Richter, M.K.: Stochastic rationality and revealed stochastic preference. In: Chipman, J., McFadden, D., Richter, M.K. (eds.) Preferences, uncertainty, and rationality, pp. 187–202. Boulder: Westview Press 1991Google Scholar
  43. Polemarchakis, H.M.: Homotheticity and the aggregation of consumer demands. The Quarterly Journal of Economics 98, 363–369 (1983)zbMATHGoogle Scholar
  44. Quah, J.K.H.: The monotonicity of individual and market demand. Econometrica 68, 911–930 (2000)CrossRefzbMATHGoogle Scholar
  45. Samuelson, P.A.: Social indifference curves. The Quarterly Journal of Economics LXX(1), 1–11 (1956)Google Scholar
  46. Sonnenschein, H.: Do Walras’identity and continuity characterize the class of community excess demand functions? Journal of Economic Theory 6, 345–354 (1973)CrossRefMathSciNetGoogle Scholar
  47. Sonnenschein, H.: Market excess demand functions. Econometrica 40, 549–563 (1974)MathSciNetGoogle Scholar
  48. Stoker, T.M.: Empirical approaches to the problem of aggregation over individuals. Journal of Economic Literature 31, 1827–1874 (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Rosa L. Matzkin
    • 1
  1. 1.Department of EconomicsNorthwestern UniversityEvanstonUSA

Personalised recommendations