Revealed stochastic preference: a synthesis

  • Daniel L. McFadden
Conference paper
Part of the Studies in Economic Theory book series (ECON.THEORY, volume 26)


The problem of revealed stochastic preference is whether probability distributions of observed choices in a population for various choice situations are consistent with a hypothesis of maximization of preference preorders by members of the population. This is a population analog of the classical revealed preference problem in economic consumer theory. This paper synthesizes the solutions to this problem that have been obtained by Marcel K. Richter and the author, and by J. C. Falmagne, in the case of finite sets of alternatives, and utilizes unpublished research of Richter and the author to give results for the non-finite choice sets encountered in economic consumer theory.

Keywords and Phrases

Choice Stochastic preference Revealed preference Random utility maximization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bandyopadhyay, T., Dasgupta, I., Pattanaik, P.: Stochastic revealed preference and the theory of demand. Journal of Economic Theory 84, 95–110 (1999)CrossRefGoogle Scholar
  2. Barbera, S., Pattanaik, P.: Falmagne and the rationalizability of stochastic choices in terms of random orderings. Econometrica 54, 707–716 (1986)MathSciNetGoogle Scholar
  3. Barbara, S.: Rationalizable stochastic choice over restricted domains. In: Chipman, J., McFadden, D., Richter, K. (eds.) Preferences, uncertainty, and rationality, pp. 203–217. Boulder: Westview Press 1991Google Scholar
  4. Block, H., Marschak, J.: Random orderings and stochastic theories of response. In: Olkin, I., et al (eds.) Contributions to probability and statistics, pp. 97–132. Stanford: Stanford University Press 1960Google Scholar
  5. Brown, D., Matzkin, R.: Testable Restrictions on the equilibrium manifold. Econometrica 64, 1249–1262 (1996)Google Scholar
  6. Cohen, M.: Random utility systems — the infinite case. Journal of Mathematical Psychology 22, 1–23 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  7. Cohen, M., Falmagne, J.: Random utility representation of binary choice probabilities: a new class of necessary conditions. Journal of Mathematical Psychology 34, 88–94 (1990)CrossRefMathSciNetGoogle Scholar
  8. Debreu, G.: Preference functions on a measure space of economic agents. Econometrica 35, 111–122 (1967)zbMATHMathSciNetGoogle Scholar
  9. Dunford, N., Schwartz, J.: Linear operators. New York: Interscience 1964Google Scholar
  10. Falmagne, J.: A representation theorem for finite random scale systems. Journal of Mathematical Psychology 18, 52–72 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  11. Fishburn, P.: Choice probabilities and choice functions. Jounal of Mathematical Psychology 10, 327–352 (1978)MathSciNetGoogle Scholar
  12. Fishburn, P., Falmagne, J.: Binary choice probabilities and rankings. Economic Letters 31, 113–117 (1989)CrossRefMathSciNetGoogle Scholar
  13. Fishburn, P.: Induced binary probabilities and the linear ordering polytope: a status report. Mathematical Social Sciences 23, 67–80 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  14. Fishburn, P.: Stochastic utility. In: Barbara, S., Hammond, P., Seidl, C. (eds.) Handbook of utiltiy theory, pp. 273–320. Boston: Kluwer 1998Google Scholar
  15. Freedman, D., Purves, R.: Bayes method for bookies. Annals of Mathematical Statistics 40, 117–1186 (1969)MathSciNetGoogle Scholar
  16. Halldin, C.: The choice axiom, revealed preference, and the theory of demand. Theory and Decision 5, 139–160 (1974)CrossRefzbMATHGoogle Scholar
  17. Hildenbrand, W.: Random preferences and equilibrium analysis. Journal of Economic Theory 3, 414–429 (1971)CrossRefMathSciNetGoogle Scholar
  18. Hildenbrand, W.: Core and equilibrium of a large economy. Princeton, NJ: Princeton University Press 1974Google Scholar
  19. Houthakker, H.: Revealed preference and the utility function. Economica 17, 159–174 (1950)MathSciNetGoogle Scholar
  20. Karlin, S.: Mathematical methods and theory in games, programming, and economics, pp. 265–273. New York: Addison-Wesley 1959Google Scholar
  21. Luce, D.: Individual choice behavior. New York: Wiley 1959Google Scholar
  22. Luce, D., Suppes, P.: Preferences, utility, and subjective probability. In: Luce, D., et al (eds.) Handbook of mathematical psychology, Vol. III, pp. 249–410. New York: Wiley 1965Google Scholar
  23. Manski, C.: The structure of random utility models. Theory and Decision 8, 229–254 (1977)CrossRefzbMATHMathSciNetGoogle Scholar
  24. Marschak, J.: Binary-choice constrains on random utility indicators. In: Arrow, K., Karlin, S., Suppes, P. (eds.) Mathematical methods in the social sciences, pp. 312–329. Stanford: Stanford University Press 1960Google Scholar
  25. Matzkin, R.: Nonparametric and distribution-free estimation of the binary threshold crossing and the binary choice models. Econometrica 60, 239–270 (1992)zbMATHMathSciNetGoogle Scholar
  26. McCausland, W.: A theory of random consumer demand. Working paper (2002)Google Scholar
  27. McFadden, D., Richter, M.K.: On the extension of a set function on a set of events to a probability on the generated Boolean σ-algebra. University of California, Berkeley, Working paper (1971)Google Scholar
  28. McFadden, D.: Estimation and testing of models of individual choice behavior from data on a population of subjects. University of California, Berkeley, Working paper (1973)Google Scholar
  29. McFadden, D.: Conditional logit analysis of qualitative choice behavior. In: Zarembka, P. (ed.) Frontiers of econometrics, pp. 105–142. New York: Academic Press 1974Google Scholar
  30. McFadden, D.: Tchebyscheff bounds for the space of agent characteristics. Journal of Mathematical Economics 2, 225–242 (1975)zbMATHMathSciNetGoogle Scholar
  31. McFadden, D.: A note on the computability of the strong axiom of revealed preference. Journal of Mathematical Economics 6, 15–16 (1979)CrossRefzbMATHGoogle Scholar
  32. McFadden, D., Richter, K. Stochastic rationality and revealed stochastic preference. In Chipman, J., McFadden, D., Richter, K. (eds.) Preferences, uncertainty, and rationality, pp. 161–186. Boulder: Westview Press 1991Google Scholar
  33. McFadden, D.: Economic choices. American Economic Review 91, 351–378 (2001)Google Scholar
  34. McLennan, A.: Binary stochastic choice. in: Chipman, J., McFadden, d., Richter, K. (eds.) Preferences, uncertainty, and rationality, pp. 187–202. Boulder: Westview Press 1991Google Scholar
  35. Neveu, J.: Mathematical foundations of the calculus of probability. San Francisco: Holden-Day 1965Google Scholar
  36. Richter, K.: Revealed preference theory. Econometrica 34, 635–645 (1966)zbMATHGoogle Scholar
  37. Richter, K.: Rational choice. In: Chipman, J., et al (eds.) Preferences, utility and demand, pp. 29–58. New York: Harcourt-Brace 1971Google Scholar
  38. Samuelson, P.: A note on the pure theory of consumer behavior. Economica 5, 51–71 and 353–354 (1938)Google Scholar
  39. Thurstone, L.: A law of comparative judgment. Psychological Review 34, 273–286 (1927)Google Scholar
  40. Varian, H.: The nonparametric approach to demand analysis. Econometrica 50, 945–974 (1982)zbMATHMathSciNetGoogle Scholar
  41. Varian, H.: Nonparametric tests of consumer behavior. Review of Economic Studies 50, 99–110 (1983)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Daniel L. McFadden
    • 1
  1. 1.Department of EconomicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations