Advertisement

Static and Time-Variable Gravity from GRACE Mission Data

  • Roland Schmidt
  • Frank Flechtner
  • Ulrich Meyer
  • Christoph Reigber
  • Franz Barthelmes
  • Christoph Förste
  • Richard Stubenvoll
  • Rolf König
  • Karl-Hans Neumayer
  • Shengyuan Zhu

Summary

Based on the GRACE mission data, a new era of static and time-variable gravity models with unprecedented resolution and accuracy have been generated by the GRACE Science Data System teams. In general, the spatial resolution of the field from pre-CHAMP satellite only models of about 1000 km can be increased by a factor of 5 – 6 thanks to the micrometer-precise K-band intersatellite link. The currently obtained gain in accuracy reaches one to two orders of magnitude, compared to the most advanced combination gravity pre-CHAMP models, but is still one order of magnitude away from the projected GRACE baseline accuracy.

In this article we highlight the advances in gravity recovery with GRACE, based on recent results from GFZ Potsdam for a new GRACE-only medium-wavelength gravity model, called EIGEN-GRACE03S, a new combined high-resolution model complete up to degree and order 360, called EIGEN-CG03C, and the derivation of time-variable gravity signals from monthly GRACE-only gravity models.

Evaluation of EIGEN-GRACE03S and EIGEN-CG03C shows that both models benefit in its long-to-medium wavelength part from an extended data base for GRACE, an augmented processing of the GRACE data as well as a meanwhile more complete and homogeneous compilation of surface data. The progress in resolution and accuracy with respect to earlier GRACE-based gravity models is moderate but visible at the level of 1 – 2 percent for standard comparisons.

The derivation of time-variable gravity signals from a time series of 16 monthly GRACE-only gravity solutions reveals the mission’s sensitivity to hydrology-induced surface mass variations. The annual-varying signal on global and regional scales can be resolved down to spatial scales of a few hundred kilometers and the estimates are well above the assumed error level of the GRACE gravity solutions. Observable discrepancies with respect to the signal amplitudes, phases and spatial distribution indicate the potential contributions from GRACE to hydrological modelling, but also reveal systematic errors in the GRACE monthly fields.

Key words

GRACE static gravity time-variable gravity dynamic gravity recovery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bell RE, Childers VA, Arko RA (1999) Airborne and precise positioning for geologic applications. J. Geophys. Res., 104(B7), 15281–18292CrossRefGoogle Scholar
  2. Biancale R, Balmino G, Lemoine JM, Marty JC, Moynot B, Barlier F, Exertier P, Laurain O, Gegout P, Schwintzer P, Reigber Ch, Bode A, König R, Massmann FH, Raimondo JC, Schmidt R, Zhu SY (2000) A new global Earth’s gravity field model from satellite orbit perturbations: GRIM5-S1. Geophys. Res. Lett., 27, 3611–3614CrossRefGoogle Scholar
  3. Döll P, Kaspar F, Lehner B (2003) A global hydrological model for deriving water availability indicators: model tuning and validation. J. Hydrol., 270, 105–134CrossRefGoogle Scholar
  4. Flechtner F, Schmidt R, Zhu SY, Meyer UL (2005) GRACE gravity field solutions using different de-aliasing models. Poster EGU05-A-04815 presented at the European Geosciences Union General Assembly 2005, Vienna, Austria, 24–29 April 2005Google Scholar
  5. Forsberg R, Kenyon S (2004) Gravity and geoid in the Arctic region-The nortern gap now filled. Proceedings of 2nd GOCE User Workshop, ESA SP-569, ESA Publication Division, Noordwijk, The NetherlandsGoogle Scholar
  6. Han SC, Jekeli C, Shum CK (2004) Time-variable aliasing effects of ocean tides, atmosphere, and continental water mass on monthly mean GRACE fields. J. Geophys. Res., 109, B04403, doi:10.1029/2003JB002501Google Scholar
  7. Han SC, Shum CK, Jekeli C, Alsdorf D (2005) Improved estimation of terrestrial water storage changes from GRACE. Geophys. Res. Let., 32, doi: 10.1029/2005GL022382Google Scholar
  8. Hernandez FP, Schaeffer MH, Calvez J, Dorandeu Y, Faugére Y, Mertz F (2001) Surface Moyenne Oceanique: Support Scientifique à la mission altimetrique Jason-1, et à une mission micro-satellite altimetrique. Contract SSALTO 2945-Ot2-A1. Rapport final no. CLS/DOS/NT/00.341, CLS, Remonville St AgneGoogle Scholar
  9. Lemoine FG, Kenyon S, Factor JK, Trimmer RG, Pavlis NK, Chinn DS, Cox CM, Klosko SM, Luthcke SB, Torrence MH, Wang YM, Williamson RG, Pavlis EC, Rapp RH, Olsen TR (1998) The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96. NASA Technical Paper NASA/TP-1998-206861, Goddard Space Flight Center, GreenbeltGoogle Scholar
  10. Reigber CH, Schmidt R, Flechtner F, König R, Meyer UL, Neumayer KH, Schwintzer P, Zhu SY (2003) First GFZ GRACE gravity field model EIGEN-GRACE01S from 39 days of GRACE data. http://www.gfzpotsdam.de/pb1/op/grace/results/index_RESULTS.htmlGoogle Scholar
  11. Reigber CH, Schmidt R, Flechtner F, König R, Meyer UL, Neumayer KH, Schwintzer P, Zhu SY (2005a) An Earth gravity field model complete to degree and order 150 from GRACE: EIGEN-GRACE02S. J. Geodynamics, 39, 1–10, doi: 10.1016/j.jog.2004.07.001CrossRefGoogle Scholar
  12. Reigber CH, Schwintzer P, Stubenvoll R, Schmidt R, Flechtner F, Meyer UL, König R, Neumayer KH, Förste CH, Barthelmes F, Zhu SY, Balmino G, Biancale R, Lemoine JM, Meixner H, Raimondo JC (2005b) A high resolution global gravity field model combining CHAMP and GRACE satellite mission and surface data: EIGEN-CG01C. accepted by J. of GeodesyGoogle Scholar
  13. Schmidt R, Schwintzer P, Flechtner F, Reigber CH, Güntner A, Döll P, Ramillien G, Cazenave A, Petrovic S, Jochmann H. Wünsch J (2005) GRACE observations of changes in continental water storage, accepted by Global and Planetary ChangeGoogle Scholar
  14. Tapley BD, Reigber CH (2001) The GRACE mission: Status and future plans. EOS Trans AGU, 82(47), Fall Meet. Suppl., G41 C–02Google Scholar
  15. Tapley BD, Chambers D, Bettadpur S, Ries J (2003) Large Scale Ocean Circulation from the GRACE GGM01 Geoid. Geophys. Res. Lett., 30(22), 2163, doi: 10.1029/2003GL018622CrossRefGoogle Scholar
  16. Tapley BD, Bettadpur S,Watkins MM, Reigber CH (2004a) The Gravity Recovery and Climate Experiment: Mission Overview and Early Results. Geophys. Res. Lett., 31, L09607, doi:10.1029/2004GL019920CrossRefGoogle Scholar
  17. Tapley BD, Bettadpur S, Ries J, Thompson P, Watkins MM (2004b) GRACE measurements of mass variability in the Earth system. Science, 305, 503–505, doi: 10.1126/science.1099192CrossRefGoogle Scholar
  18. Tapley BD, Ries J, Bettadpur S, Chambers D, Cheng M, Condi F, Gunter B, Kang Z, Nagel P, Pastor R, Pekker T, Wang F (2005) GGM02-An improved Earth gravity field model from GRACE. In review, J. of GeodesyGoogle Scholar
  19. Stammer D, Wunsch C, Giering R, Eckert C, Heinbach P, Marotzke J, Adcraft A, Hill CN, Marshall J (2002) Global ocean circulation during 1992–1997 estimation from ocean observations and a general circulation model. J. Geophys. Res., 107(C9): 3118, doi:10.1029/2001JC000888CrossRefGoogle Scholar
  20. Swenson S, Wahr J (2003) Methods for inferring regional surface-mass anomalies from Gravity Recovery and Climate Experiment (GRACE) measurements of time-variable gravity. J. Geophys. Res., 107(B9), 2193, doi: 10.1029/2001JB000576CrossRefGoogle Scholar
  21. Véronneau (2003), pers. commun.Google Scholar
  22. Wahr J, Swenson S, Zlotnicki V, Velicogna I (2004) Time-variable gravity from GRACE: First results. Geophys. Res. Lett., 31, L11501, doi: 10.1029/2004GL019779CrossRefGoogle Scholar
  23. Wünsch J, Schwintzer P, Petrović S (2005) Comparison of two different ocean tide models especially with respect to the GRACE satellite mission. Scientific Technical Report, STR05/08, GeoForschungsZentrum PotsdamGoogle Scholar
  24. Zhu SY, Reigber CH, König R (2004) Integrated adjustment of CHAMP, GRACE, and GPS data. J. Geodesy, 78, 103–108, doi: 10.1007/s0019000403790CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Roland Schmidt
    • 1
  • Frank Flechtner
    • 1
  • Ulrich Meyer
    • 1
  • Christoph Reigber
    • 1
  • Franz Barthelmes
    • 1
  • Christoph Förste
    • 1
  • Richard Stubenvoll
    • 1
  • Rolf König
    • 1
  • Karl-Hans Neumayer
    • 1
  • Shengyuan Zhu
    • 1
  1. 1.Dept. 1 Geodesy and Remote SensingGeoForschungsZentrum Potsdam (GFZ)PotsdamGermany

Personalised recommendations