Advertisement

SAGS4 — StrapDown Airborne Gravimetry System Analysis

  • Gerd Boedecker
  • Andrea Stürze

Summary

A strapdown airborne gravimeter of a peculiar configuration has been developed and is nearly operational for observing total acceleration. Precision high sampling rate GPS receivers provide the kinematic acceleration. The overall system and its hardware is analysed with focus on signal flow.

Key words

Airborne gravimetry kinematic GPS positioning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boedecker G, Leismüller F, Neumayer K H (1999–2001) Device and Method for measuring Gravitation. Dgl. Patent USA #5,924,056 (1999), Dgl. Patent Australien #700890 (1999), Dgl. Europ. Patent EP 0 778 955 (1999), Dgl. Patent Russland #2144686 (2000), Dgl. Patent Canada #2,198,925 (2001)Google Scholar
  2. Chen G (1996) Robuste Verfahren zur Analyse linearer stochastischer Prozesse im Zeitbereich. Doctoral Thesis, Institute of Geodesy and Navigation, University FAF, MunichGoogle Scholar
  3. Eissfeller B (1997) Ein dynamisches Fehlermodell für GPS Autokorrelationsempfänger. Doctoral Thesis, Institute of Geodesy and Navigation, University FAF, MunichGoogle Scholar
  4. Eykhoff P (1974) System Identification. Parameter and State Estimation. John Wiley & Son, London New York Sydney TorontoGoogle Scholar
  5. Hütte, Czichos H (Hrsg.) (1996) Die Grundlagen der Ingenieurwissenschaften. Springer, Berlin Heidelberg New YorkGoogle Scholar
  6. Kiencke, U, Jäkel H (2002) System Identification. Signale und Systeme. 2. Aufl., R. Oldenbourg Verlag, München WienGoogle Scholar
  7. Kronmüller H (1991) Digitale Signalverarbeitung. Springer, Berlin HeidelbergGoogle Scholar
  8. Langley R B (1997) GPS Receiver system noise. GPS World June: 40–45Google Scholar
  9. Lathi B P (2002) Linear Systems and Signals. Oxford University Press, Oxford New YorkGoogle Scholar
  10. Lathi B P (2005) Linear Systems and Signals. 2nd edition, Oxford University Press, Oxford New YorkGoogle Scholar
  11. Oppenheim A V, Schafer R W, Buck J R (2004) Zeitdiskrete Signalverarbeitung. 2. Aufl., Pearson Studium, MünchenGoogle Scholar
  12. Schwarz K P (2001) The impossible dream, thoughts on the development of airborne gravimetry. Wissenschaftliche Arbeiten der Universität Hannover, Nr. 241, HannoverGoogle Scholar
  13. Spilker JJ, JR (1996) Fundamentals of Signal Tracking Theory. In: Parkinson, B W und Spilker, J J JR: Global Positioning System: Theory and Applications. Volume I, American Institute of Aeronautics and Astronautics.Google Scholar
  14. Stürze A, Boedecker G (2004) High Precision Kinematic GNSS Observations Up to 50 S/s for Airborne Gravimetry. Proceedings of the ION GNSS 2004, Long Beach, September 21–24Google Scholar
  15. Sundstrand Data Control (1986) Inc.: Sundstrand Data Control’s Q-Flex Accelerometers. Instruction manualGoogle Scholar
  16. Unbehauen R (1996) Regelungs-und Steuerungstechnik. In: Czichos (Hrsg). Hütte: Die Grundlagen der Ingenieurwissenschaften. 30. Aufl., Springer, Berlin HeidelbergGoogle Scholar
  17. Unbehauen R (2002) Systemtheorie I. 8. Aufl., R. Oldenbourg Verlag, München WienGoogle Scholar
  18. Wüstling S (1997) Hochintegriertes triaxiales Beschleunigungssensorsystem. Forschungszentrum Karlsruhe. Wissenschaftliche Berichte, FZKA 6003, KarlsruheGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Gerd Boedecker
    • 1
  • Andrea Stürze
    • 1
  1. 1.Bavarian Academy of Sciences and HumanitiesMunich

Personalised recommendations