Advertisement

High-Performance GOCE Gravity Field Recovery from Gravity Gradient Tensor Invariants and Kinematic Orbit Information

  • Oliver Baur
  • Erik W. Grafarend
Chapter

Summary

The GOCE mission, planned to be launched in autumn 2006, will allow to determine the static Earth gravity field down to features of 100 km-70 km (half wavelength) in terms of spatial resolution. Since satellite gradiometry is restricted to the medium- to short-wavelength part of the gravitational spectrum, only its combination with satellite-to-satellite measurements in the high-low mode will meet the mission requirements as demanded by the ESA, namely a high-accurate GOCE-only terrestrial gravity field modeling. Here we apply the acceleration approach which is predominantly characterized by numerical differentiation of the kinematic GOCE orbit. Gradiometry is treated by analysis of the fundamental invariants of the gravitational tensor. These quantities neither depend on reference frame rotations nor on the orientation of the gradiometer frame in space. Linearization, computational effort and amalgamation of tensor elements provided with different levels of accuracy make this approach hard to handle. The use of high performance computing facilities, parallel programming standards and optimized numerical libraries are the key to accomplish efficient gravity field recovery.

Key words

GOCE-only Solution Tensor Invariants Kinematic Orbit Analysis Numerical Differentiation High Performance Computing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J, Du Croz J, Greenbaum A, Hammarling S, McKenney A, Sorensen D (1999) LAPACK Users’ Guide (third edition). SIAM Publications, PhiladelphiaGoogle Scholar
  2. Baur O, Austen G (2005) A parallel iterative algorithm for large-scale problems of type potential field recovery from satellite data. Manuscript submitted to Advances in GeosciencesGoogle Scholar
  3. Colombo O (1981) Numerical methods for harmonic analysis on the sphere. Department of Geodetic Science, Report No. 310, Ohio State University, Columbus, OhioGoogle Scholar
  4. Ditmar P, Klees R (2002) A method to compute the Earth’s gravity field from SGG/SST data to be acquired by the GOCE satellite. Delft University PressGoogle Scholar
  5. ESA (1999) Gravity Field and steady-state ocean circulation-The four candidate Earth explorer core missions. ESA Publications Division, ESA SP-1233(1), ESTEC, Noordwijk, The NetherlandsGoogle Scholar
  6. ESA (2000) From Eötvös to milligal. Final report ESA/ESTEC, Contract No. 13392/NL/GDGoogle Scholar
  7. Földváry L, Švehla D, Gerlach C, Wermuth M, Gruber T, Rummel R, Rothacher M, Frommknecht B, Peters T, Steigenberger P (2005) Gravity Model TUM-2Sp Based on the Energy Balance Approach and Kinematic CHAMP Orbits. In: Reigber C, Lühr H, Schwintzer P, Wickert J (eds.) Earth Observation with CHAMP-Results from Three Years in Orbit, 13–16, Springer, BerlinGoogle Scholar
  8. Hestenes MR, Stiefel E (1952) Methods of conjugate gradients for solving linear systems. Journal of Research of the National Bureau of Standards, 49, 409–436Google Scholar
  9. Kaula WM (1966) Theory of satellite geodesy. Blaisdell, Waltham, MAGoogle Scholar
  10. Klees R, Koop R, Visser P, van den IJssel J (2000) Efficient gravity field recovery from GOCE gravity gradient observations. JoG, 74, 561–571Google Scholar
  11. Maeß G (1988) Vorlesungen über numerische Mathematik II. Akademie Verlag, BerlinGoogle Scholar
  12. Mayer-Gürr T, Ilk KH, Eicker A, Feuchtinger M (2005) ITG-CHAMP01: A CHAMP Gravity Field Model from Short Kinematic Arcs over a One-Year Observation Period. JoG, 78, 462–480Google Scholar
  13. Paige CC, Saunders MA (1982a) LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Transactions on Mathematical Software, 8, 43–71CrossRefGoogle Scholar
  14. Paige CC, Saunders MA (1982b) LSQR: Sparse linear equations and least squares problems. ACM Transactions on Mathematical Software, 8, 195–209CrossRefGoogle Scholar
  15. Pail R, Plank G (2002) Assessment of three numerical solution strategies for gravity field recovery from GOCE satellite gravity gradiometry implemented on a parallel platform. JoG, 76, 462–474Google Scholar
  16. Reigber C, Jochmann H, Wnsch J, Petrovic S, Schwintzer P, Barthelmes F, Neumayer KH, König R, Förste C, Balmino G, Biancale R, Lemoine JM, Loyer S, Perosanz F (2005) Earth Gravity Field and Seasonal Variability from CHAMP. In: Reigber C, Lühr H, Schwintzer P, Wickert J (eds.) Earth Observation with CHAMP-Results from Three Years in Orbit, 25–30, Springer, BerlinGoogle Scholar
  17. Reubelt T, Austen G, Grafarend EW (2003) Harmonic analysis of the Earth’s gravitational field by means of semi-continuous ephemerides of a low Earth orbiting GPS-tracked satellite. Case study: CHAMP. JoG, 77, 257–278Google Scholar
  18. Reubelt T, Götzelmann M, Grafarend EW (2005) A new CHAMP gravitational field model based on the GIS acceleration approach and two years of kinematic CHAMP data. Manuscript submitted to Advances in GeosciencesGoogle Scholar
  19. Rummel R (1986) Satellite Gradiometry. In: Sünkel H (ed.) Mathematical and Numerical Techniques in Physical Geodesy, Lecture Notes in Earth Sciences 7, SpringerGoogle Scholar
  20. Rummel R, Sansò F, van Gelderen M, Brovelli M, Koop R, Miggliaccio F, Schrama E, Scerdote F (1993) Spherical harmonic analysis of satellite gradiometry. Netherlands Geodetic Commission, New Series, 39Google Scholar
  21. Saccoccia G, Gonzales del Amo J, Estublier D (2000) Electric Propulsion: A Key Technology for Space Missions in the New Millenium. ESA Bulletin 101, ESTEC, Noordwijk, The NetherlandsGoogle Scholar
  22. Schuh WD (1996) Tailored Numerical Solution Strategies for the Global Determination of the Earth’s Gravity Field. Mitteilungen der Geodätischen Institute der TU Graz, 81, GrazGoogle Scholar
  23. Sneeuw N (2000) A semi-analytical approach to gravity field analysis from satellite observations. DGK, Series C, No. 527, MunichGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Oliver Baur
    • 1
  • Erik W. Grafarend
    • 1
  1. 1.Geodetic DepartmentStuttgart UniversityStuttgart

Personalised recommendations