Skip to main content

Intein Reporter and Selection Systems

  • Chapter
Homing Endonucleases and Inteins

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 16))

  • 644 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam E, Perler FB (2002) Development of a positive genetic selection system for inhibition of protein splicing using mycobacterial inteins in Escherichia coli DNA gyrase subunit A. J Mol Microbiol Biotechnol 4:479–487

    PubMed  CAS  Google Scholar 

  • Belfort M, Pedersen-Lane J (1984) Genetic system for analyzing Escherichia coli thymidylate synthase. J Bacteriol 160:371–378

    PubMed  CAS  Google Scholar 

  • Belfort M (1998) Inteins as antimicrobial targets: genetic screens for intein function. US patent 5,795,731, Health Research Incorporated (Albany, NY)

    Google Scholar 

  • Buskirk AR, Ong YC, Gartner ZJ, Liu DR (2004) Directed evolution of ligand dependence: small-molecule-activated protein splicing. Proc Natl Acad Sci USA 101:10505–10510

    Article  PubMed  CAS  Google Scholar 

  • Cann IK, Amaya KR, Southworth MW, Perler FB (2004) Bacteriophage-based genetic system for selection of nonsplicing inteins. Appl Environ Microbiol 70:3158–3162

    Article  PubMed  CAS  Google Scholar 

  • Carreras CW, Santi DV (1995) The catalytic mechanism and structure of thymidylate synthase. Annu Rev Biochem 64:721–762

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Pradhan S, Evans TC Jr (2001) Herbicide resistance from a divided EPSPS protein: the split Synechocystis DnaE intein as an in vivo affinity domain. Gene 263:39–48

    PubMed  CAS  Google Scholar 

  • Chin HG, Kim GD, Marin I, Mersha F, Evans TC Jr, Chen L, Xu M-Q, Pradhan S (2003) Protein trans-splicing in transgenic plant chloroplast: reconstruction of herbicide resistance from split genes. Proc Natl Acad Sci USA 100:4510–4515

    PubMed  CAS  Google Scholar 

  • Chong S, Shao Y, Paulus H, Benner J, Perler FB, Xu M-Q (1996) Protein splicing involving the Saccharomyces cerevisiae VMA intein. The steps in the splicing pathway, side reactions leading to protein cleavage, and establishment of an in vitro splicing system. J Biol Chem 271:22159–22168

    PubMed  CAS  Google Scholar 

  • Chong S, Mersha FB, Comb DG, Scott ME, Landry D, Vence LM, Perler FB, Benner J, Kucera RB, Hirvonen CA, Pelletier JJ, Paulus H, Xu M-Q (1997) Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element. Gene 192:271–281

    Article  PubMed  CAS  Google Scholar 

  • Cooper AA, Chen YJ, Lindorfer MA, Stevens TH (1993) Protein splicing of the yeast TFP1 intervening protein sequence: a model for self-excision. EMBO J 12:2575–2583

    PubMed  CAS  Google Scholar 

  • Daugelat S, Jacobs WR Jr (1999) The Mycobacterium tuberculosis recA intein can be used in an ORFTRAP to select for open reading frames. Protein Sci 8:644–653

    PubMed  CAS  Google Scholar 

  • Davis EO, Sedgwick SG, Colston MJ (1991) Novel structure of the recA locus of Mycobacterium tuberculosis implies processing of the gene product. J Bacteriol 173:5653–5662

    PubMed  CAS  Google Scholar 

  • Davis EO, Jenner PJ, Brooks PC, Colston MJ, Sedgwick SG (1992) Protein splicing in the maturation of M. tuberculosis recA protein: a mechanism for tolerating a novel class of intervening sequence. Cell 71:201–210

    PubMed  CAS  Google Scholar 

  • Derbyshire V, Wood DW, Wu W, Dansereau JT, Dalgaard JZ, Belfort M (1997) Genetic definition of a protein-splicing domain: functional mini-inteins support structure predictions and a model for intein evolution. Proc Natl Acad Sci USA 94:11466–11471

    Article  PubMed  CAS  Google Scholar 

  • Evans TC Jr, Benner J, Xu M-Q (1998) Semisynthesis of cytotoxic proteins using a modified protein splicing element. Protein Sci 7:2256–2264

    Article  PubMed  CAS  Google Scholar 

  • Foury F (1990) The 31-kDa polypeptide is an essential subunit of the vacuolar ATPase in Saccharomyces cerevisiae. J Biol Chem 265:18554–18560

    PubMed  CAS  Google Scholar 

  • Gabant P, Dreze PL, van Reeth T, Szpirer J, Szpirer C (1997) Bifunctional lacZ alpha-ccdB genes for selective cloning of PCR products. Biotechniques 23:938–941

    PubMed  CAS  Google Scholar 

  • Gangopadhyay JP, Jiang SQ, Paulus H (2003) An in vitro screening system for protein splicing inhibitors based on green fluorescent protein as an indicator. Anal Chem 75:2456–2462

    Article  PubMed  CAS  Google Scholar 

  • Ghosh I, Sun L, Xu MQ (2001) Zinc inhibition of protein trans-splicing and identification of regions essential for splicing and association of a split intein. J Biol Chem 276:24051–24058

    PubMed  CAS  Google Scholar 

  • Hawkey PM (2003) Mechanisms of quinolone action and microbial response. J Antimicrob Chemother 51[Suppl 1]:29–35

    PubMed  CAS  Google Scholar 

  • Hirata R, Ohsumk Y, Nakano A, Kawasaki H, Suzuki K, Anraku Y (1990) Molecular structure of a gene, VMA1, encoding the catalytic subunit of H(+)-translocating adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. J Biol Chem 265:6726–6733

    PubMed  CAS  Google Scholar 

  • Jacobs WR Jr, Daugelat S (1999) Vector constructs for the selection and identification of open reading frames. US Patent 5 98 182, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY

    Google Scholar 

  • Jacobs WR Jr, Kalpana GV, Cirillo JD, Pascopella L, Snapper SB, Udani RA, Jones W, Barletta RG, Bloom BR (1991) Genetic systems for mycobacteria. Methods Enzymol 204:537–555

    PubMed  CAS  Google Scholar 

  • Kane PM, Yamashiro CT, Wolczyk DF, Neff N, Goebl M, Stevens TH (1990) Protein splicing converts the yeast TFP1 gene product to the 69-kD subunit of the vacuolar H(+)-adenosine triphosphatase. Science 250:651–657

    PubMed  CAS  Google Scholar 

  • Kawasaki M, Nogami S, Satow Y, Ohya Y, Anraku Y (1997) Identification of three core regions essential for protein splicing of the yeast Vma1 protozyme. A random mutagenesis study of the entire Vma1-derived endonuclease sequence. J Biol Chem 272:15668–15674

    PubMed  CAS  Google Scholar 

  • Lew BM, Paulus H (2002) An in vivo screening system against protein splicing useful for the isolation of non-splicing mutants or inhibitors of the RecA intein of Mycobacterium tuberculosis. Gene 282:169–177

    Article  PubMed  CAS  Google Scholar 

  • Lewandoski M (2001) Conditional control of gene expression in the mouse. Nat Rev Genet 2:743–755

    Article  PubMed  CAS  Google Scholar 

  • Liu XQ, Yang J (2004) Prp8 intein in fungal pathogens: target for potential antifungal drugs. FEBS Lett 572:46–50

    Article  PubMed  CAS  Google Scholar 

  • Lohr D, Venkov P, Zlatanova J (1995) Transcriptional regulation in the yeast GAL gene family: a complex genetic network. FASEB J 9:777–787

    PubMed  CAS  Google Scholar 

  • Lutz S, Fast W, Benkovic SJ (2002) A universal, vector-based system for nucleic acid reading-frame selection. Protein Eng 15:1025–1030

    PubMed  CAS  Google Scholar 

  • Martin DD, Xu M-Q, Evans TC Jr (2001) Characterization of a naturally occurring transsplicing intein from Synechocystis sp. PCC6803. Biochemistry 40:1393–1402

    PubMed  CAS  Google Scholar 

  • McGuire SE, Roman G, Davis RL (2004) Gene expression systems in Drosophila: a synthesis of time and space. Trends Genet 20:384–391

    Article  PubMed  CAS  Google Scholar 

  • Mills KV, Paulus H (2001) Reversible inhibition of protein splicing by zinc ion. J Biol Chem 276:10832–10838

    Article  PubMed  CAS  Google Scholar 

  • Mills KV, Manning JS, Garcia AM, Wuerdeman LA (2004) Protein splicing of a Pyrococcus abyssi intein with a C-terminal glutamine. J Biol Chem 279:20685–20691

    PubMed  CAS  Google Scholar 

  • Mootz HD, Blum ES, Tyszkiewicz AB, Muir TW (2003) Conditional protein splicing: a new tool to control protein structure and function in vitro and in vivo. J Am Chem Soc 125:10561–10569

    Article  PubMed  CAS  Google Scholar 

  • Morassutti C, de Amicis F, Skerlavaj B, Zanetti M, Marchetti S (2002) Production of a recombinant antimicrobial peptide in transgenic plants using a modified VMA intein expression system. FEBS Lett 519:141–146

    Article  PubMed  CAS  Google Scholar 

  • Nichols NM, Evans TC Jr (2004) Mutational analysis of protein splicing, cleavage, and selfassociation reactions mediated by the naturally split Ssp DnaE intein. Biochemistry 43:10265–10276

    Article  PubMed  CAS  Google Scholar 

  • Nogami S, Satow Y, Ohya Y, Anraku Y (1997) Probing novel elements for protein splicing in the yeast Vma1 protozyme: a study of replacement mutagenesis and intragenic suppression. Genetics 147:73–85

    PubMed  CAS  Google Scholar 

  • Ozawa T, Takeuchi TM, Kaihara A, Sato M, Umezawa Y (2001) Protein splicing-based reconstitution of split green fluorescent protein for monitoring protein-protein interactions in bacteria: improved sensitivity and reduced screening time. Anal Chem 73:5866–5874

    PubMed  CAS  Google Scholar 

  • Paulmurugan R, Umezawa Y, Gambhir SS (2002) Noninvasive imaging of protein-protein interactions in living subjects by using reporter protein complementation and reconstitution strategies. Proc Natl Acad Sci USA 99:15608–15613

    Article  PubMed  CAS  Google Scholar 

  • Paulus H (2003) Inteins as targets for potential antimycobacterial drugs. Front Biosci 8:s1157–s1165

    PubMed  CAS  Google Scholar 

  • Perler FB, Adam E (2000) Protein splicing and its applications. Curr Opin Biotechnol 11:377–383

    Article  PubMed  CAS  Google Scholar 

  • Perler FB, Comb DG, Jack WE, Moran LS, Qiang B, Kucera RB, Benner J, Slatko BE, Nwankwo DO, Hempstead SK, et al (1992) Intervening sequences in an Archaea DNA polymerase gene. Proc Natl Acad Sci USA 89:5577–5581

    PubMed  CAS  Google Scholar 

  • Phelps CB, Brand AH (1998) Ectopic gene expression in Drosophila using GAL4 system. Methods 14:367–379

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA

    Google Scholar 

  • Scott CP, Abel-Santos E, Wall M, Wahnon DC, Benkovic SJ (1999) Production of cyclic peptides and proteins in vivo. Proc Natl Acad Sci USA 96:13638–13643

    PubMed  CAS  Google Scholar 

  • Skretas G, Wood DW (2005) Regulation of protein activity with small-molecule-controlled inteins. Protein Sci 14:523–532.

    Article  PubMed  CAS  Google Scholar 

  • Southworth MW, Amaya K, Evans TC, Xu M-Q, Perler FB (1999) Purification of proteins fused to either the amino or carboxy terminus of the Mycobacterium xenopi gyrase A intein. Biotechniques 27:110–114, 116, 118–120

    PubMed  CAS  Google Scholar 

  • Southworth MW, Yin J, Perler FB (2004) Rescue of protein splicing activity from a Magnetospirillum magnetotacticum intein-like element. Biochem Soc Trans 32:250–254

    Article  PubMed  CAS  Google Scholar 

  • Telenti A, Southworth M, Alcaide F, Daugelat S, Jacobs WR Jr, Perler FB (1997) The Mycobacterium xenopi GyrA protein splicing element: characterization of a minimal intein. J Bacteriol 179:6378–6382

    PubMed  CAS  Google Scholar 

  • Van Melderen L (2002) Molecular interactions of the CcdB poison with its bacterial target, the DNA gyrase. Int J Med Microbiol 291:537–544

    PubMed  Google Scholar 

  • Wang CC, Yeh LS, Karam JD (1995) Modular organization of T4 DNA polymerase. Evidence from phylogenetics. J Biol Chem 270:26558–26564

    PubMed  CAS  Google Scholar 

  • Wood DW, Wu W, Belfort G, Derbyshire V, Belfort M (1999) A genetic system yields selfcleaving inteins for bioseparations. Nat Biotechnol 17:889–892

    PubMed  CAS  Google Scholar 

  • Wood DW, Derbyshire V, Wu W, Chartrain M, Belfort M, Belfort G (2000) Optimized singlestep affinity purification with a self-cleaving intein applied to human acidic fibroblast growth factor. Biotechnol Prog 16:1055–1063

    Article  PubMed  CAS  Google Scholar 

  • Xu M-Q, Perler FB (1996) The mechanism of protein splicing and its modulation by mutation. EMBO J 15:5146–5153

    PubMed  CAS  Google Scholar 

  • Xu M-Q, Southworth MW, Mersha FB, Hornstra LJ, Perler FB (1993) In vitro protein splicing of purified precursor and the identification of a branched intermediate. Cell 75:1371–1377

    Article  PubMed  CAS  Google Scholar 

  • Yamashiro CT, Kane PM, Wolczyk DF, Preston RA, Stevens TH (1990) Role of vacuolar acidification in protein sorting and zymogen activation: a genetic analysis of the yeast vacuolar proton-translocating ATPase. Mol Cell Biol 10:3737–3749

    PubMed  CAS  Google Scholar 

  • Yamazaki T, Otomo T, Oda N, Kyogoku Y, Uegaki K, Ito N, Ishino Y, Nakamura H (1998) Segmental isotope labeling for protein NMR using peptide splicing. J Am Chem Soc 120:5591–5592

    Article  CAS  Google Scholar 

  • Yang J, Fox GC Jr, Henry-Smith TV (2003) Intein-mediated assembly of a functional betaglucuronidase in transgenic plants. Proc Natl Acad Sci USA 100:3513–3518

    PubMed  CAS  Google Scholar 

  • Zeidler MP, Tan C, Bellaiche Y, Cherry S, Hader S, Gayko U, Perrimon N (2004) Temperature-sensitive control of protein activity by conditionally splicing inteins. Nat Biotechnol 22:871–876

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wood, D.W., Skretas, G. (2005). Intein Reporter and Selection Systems. In: Belfort, M., Wood, D.W., Stoddard, B.L., Derbyshire, V. (eds) Homing Endonucleases and Inteins. Nucleic Acids and Molecular Biology, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29474-0_19

Download citation

Publish with us

Policies and ethics