Skip to main content

Biochemical Mechanisms of Intein-Mediated Protein Splicing

  • Chapter

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 16))

Abstract

This chapter discusses the mechanism of the self-catalyzed process by which inteins promote both their own excision from a host protein and the direct linkage of the flanking host protein segments, the N- and C-exteins, by a peptide bond. The majority of inteins have a nucleophilic amino acid at their N-terminus and asparagine at their C-terminus and are linked to a C-extein with an N-terminal nucleophilic amino acid. These canonical inteins promote protein splicing by a four-step mechanism of sequential acyl rearrangements. Non-canonical inteins, which lack either the N-terminal nucleophile or the C-terminal asparagine, promote protein splicing by a variant of this mechanism or promote protein cleavage rather than splicing. A remarkable feature of the protein splicing process is that it involves multiple steps that are chemically autonomous yet proceed in a highly coordinated manner without side reactions unless perturbed by mutation, unnatural exteins, or non-physiological conditions. The factors that may serve to integrate protein splicing into a system that ordinarily operates efficiently without side reactions are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amitai G, Belenkiy O, Dassa B, Shainskaya A, Pietrokovski S (2003) Distribution and function of new bacterial intein-like protein domains. Mol Microbiol 47:61–73

    Article  PubMed  CAS  Google Scholar 

  • Amitai G, Dassa B, Pietrokovski S (2004) Protein splicing of inteins with atypical glutamine and aspartate C-terminal residues. J Biol Chem 279:3121–3131

    PubMed  CAS  Google Scholar 

  • Chen L, Benner J, Perler FB (2000) Protein splicing in the absence of an intein penultimate histidine, J Biol Chem 275:20431–20435

    PubMed  CAS  Google Scholar 

  • Chong S, Xu M-Q (1997) Protein splicing of the Saccharomyces cerevisiae VMA intein without the endonuclease motifs. J Biol Chem 272:15587–15590

    Article  PubMed  CAS  Google Scholar 

  • Chong S, Shao Y, Paulus H, Benner J, Perler FB, Xu M-Q (1996) Protein splicing involving the Saccharomyces cerevisiae VMA intein: the steps in the splicing pathway, side reactions leading to protein cleavage, and establishment of an in vitro splicing system. J Biol Chem 271:22159–22168

    PubMed  CAS  Google Scholar 

  • Chong S, Mersha FB, Comb DG, Scott ME, Landry D, Vence LM, Perler FB, Benner J, Kucera R, Hirvonen CA, Pelletier JJ, Paulus H, Xu M-Q (1997) Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element. Gene 192:271–281

    Article  PubMed  CAS  Google Scholar 

  • Chong S, Montello GE, Zhang A, Cantor EJ, Liao W, Xu M-Q, Benner J (1998a) Utilizing the C-terminal cleavage activity of a protein splicing element to purify recombinant proteins in a single chromatographic step. Nucleic Acids Res 26:5109–5115

    Article  PubMed  CAS  Google Scholar 

  • Chong S, Williams KS, Wotkovicz C, Xu M-Q (1998b) Modulation of protein splicing of the Saccharomyces cerevisiae vacuolar membrane ATPase intein. J Biol Chem 273:10567–10577

    Article  PubMed  CAS  Google Scholar 

  • Clarke S (1987) Propensity for spontaneous succinimide formation from aspartyl and asparaginyl residues in cellular proteins. Int J Peptide Protein Res 30:808–821

    CAS  Google Scholar 

  • Cooper AA, Chen Y-J, Lindorfer MA, Stevens TH (1993) Protein splicing of the yeast TFP1 intervening protein sequence: a model for self-excision. EMBO J 12:2575–2583

    PubMed  CAS  Google Scholar 

  • Dalgaard JZ, Moser MJ, Hughey R, Mian IS (1997) Statistical modeling, phylogenetic analysis and structure prediction of a protein splicing domain common to inteins and hedgehog proteins. J Comput Biol 4:193–214

    Article  PubMed  CAS  Google Scholar 

  • Dassa B, Haviv H, Amitai G, Pietrokovski S (2004) Protein splicing and auto-cleavage of bacterial intein-like domains lacking a C′-flanking nucleophilic residue. J Biol Chem 279:32001–32007

    Article  PubMed  CAS  Google Scholar 

  • Derbyshire V, Wood DW, Wu W, Dansereau JT, Dalgaard LZ, Belfort M (1997) Genetic definition of a protein-splicing domain: functional mini-inteins support structure predictions and a model for intein evolution. Proc Natl Acad Sci USA 94:11466–11471

    Article  PubMed  CAS  Google Scholar 

  • Ding Y, Xu M-Q, Ghosh I, Chen X, Ferrandon S, Lesage G, Rao Z (2003) Crystal structure of a mini-intein reveals a conserved catalytic module involved in side chain cyclization of asparagine during protein splicing. J Biol Chem 278:39133–39142

    PubMed  CAS  Google Scholar 

  • Duan X, Gimble FS, Quiocho FA (1997) Crystal structure of PI-SceI, a homing endonuclease with protein splicing activity. Cell 89:555–564

    Article  PubMed  CAS  Google Scholar 

  • Evans TC, Xu M-Q (2002) Mechanistic and kinetic considerations of protein splicing. Chem Rev 102:4869–4883

    CAS  Google Scholar 

  • Evans TC, Martin D, Kolly R, Panne D, Sun L, Ghosh I, Chen L, Benner J, Liu X-Q, Xu M-Q (2000) Protein trans-splicing and cyclization by a naturally split intein from the dnaE gene of Synechocystis species PCC6803. J Biol Chem 275:9091–9094

    PubMed  CAS  Google Scholar 

  • Geiger T, Clarke S (1987) Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. Succinimide-linked reactions that contribute to protein degradation. J Biol Chem 262:785–794

    PubMed  CAS  Google Scholar 

  • Hall TM. T, Porter JA, Young KE, Koonin EV, Beachy PE, Leahy DJ (1997) Crystal structure of a hedgehog protein autoprocessing domain: homology between hedgehog and self-splicing proteins. Cell 91:85–97

    Article  PubMed  CAS  Google Scholar 

  • Hirata R, Anraku Y (1992) Mutations at the putative junction sites of the yeast VMA1 protein, the catalytic subunit of the vacuolar H+-ATPase, inhibit its processing by protein splicing. Biochem Biophys Res Commun 188:40–47

    Article  PubMed  CAS  Google Scholar 

  • Hirata R, Ohsumi Y, Nakano A, Kawasaki H, Suzuki K, Anraku Y (1990) Molecular structure of a gene, VMA1, encoding the catalytic subunit of H+-translocating adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. J Biol Chem 265:6726–6733

    PubMed  CAS  Google Scholar 

  • Iwai K, Ando T (1967) N-O acyl rearrangement. Methods Enzymol 11:262–282

    Google Scholar 

  • Jencks WP, Cordes S, Carriulo J (1960) The free energy of thiol ester hydrolysis. J Biol Chem 235:3608–3614

    PubMed  CAS  Google Scholar 

  • Kane PM, Yamashiro CT, Wolczyk DF, Neff N, Goebl M, Stevens TH (1990) Protein splicing converts the yeast TFP1 gene product to the 69-kD subunit of the vacuolar H+-adenosine triphosphatase. Science 250:651–657

    PubMed  CAS  Google Scholar 

  • Kawasaki M, Nogami S, Satow Y, Ohya Y, Anraku Y (1997) Identification of three core regions essential for protein splicing of the yeast Vma1 protozyme. A random mutagenesis study of the entire Vma1-derived endonuclease sequence. J Biol Chem 272:15668–15674

    PubMed  CAS  Google Scholar 

  • Klabunde T, Sharma S, Telenti A, Jacobs WR, Sacchettini JC (1998) Crystal structure of GyrA intein from Mycobacterium xenopi reveals structural basis of protein splicing. Nat Struct Biol 5:31–36

    PubMed  CAS  Google Scholar 

  • Lew BM, Mills KV, Paulus H (1999) Characteristics of protein splicing in trans mediated by a semisynthetic intein. Biopolymers (Peptide Sci) 51:355–362

    Article  CAS  Google Scholar 

  • Martin DD, Xu M-Q, Evans TC (2001) Characterization of a naturally occurring trans-splicing intein from Synechocystis sp. PCC6803. Biochemistry 40:1393–1402

    PubMed  CAS  Google Scholar 

  • Mathys S, Evans TC, Chute IC, Wu H, Chong S, Benner J, Liu X-Q, Xu M-Q (1999) Characterization of a self-splicing mini-intein and its conversion into autocatalytic N-and C-terminal cleavage elements: facile production of protein building blocks for protein ligation. Gene 231:1–13

    Article  PubMed  CAS  Google Scholar 

  • Mills KV, Paulus H (2001) Reversible inhibition of protein splicing by zinc ion. J Biol Chem 241:10832–10838

    Google Scholar 

  • Mills KV, Lew BM, Jiang S-Q, Paulus H (1998) Protein splicing in trans by purified N-and C-terminal fragments of the Mycobacterium tuberculosis RecA intein. Proc Natl Acad Sci USA 95:3453–3458

    Article  Google Scholar 

  • Mills KV, Manning JS, Garcia AM, Wuerdeman LA (2004) Protein splicing of a Pyrococcus abyssi intein with a C-terminal glutamine. J Biol Chem 279:20685–20691

    PubMed  CAS  Google Scholar 

  • Mizutani R, Nogami S, Kawasaki M, Ohya Y, Anraku Y, Satow Y (2002) Protein splicing reaction via a thiazolidine intermediate; crystal structure of the VMA1-derived endonuclease bearing the N-and C-terminal propeptides. J Mol Biol 316:919–929

    Article  PubMed  CAS  Google Scholar 

  • Mizutani R, Anraku Y, Satow Y (2004) Protein splicing of yeast VMA1-derived endonuclease via thiazolidine intermediates. J Synchrotron Rad 11:109–112

    Article  CAS  Google Scholar 

  • Muir TW (2003) Semisynthesis of proteins by expressed protein ligation. Annu Rev Biochem 72:249–289

    Article  PubMed  CAS  Google Scholar 

  • Nichols NM, Evans TC (2004) Mutational analysis of protein splicing, cleavage, and self-association reactions mediated by the naturally split Ssp DnaE intein. Biochemistry 43:10265–10276

    Article  PubMed  CAS  Google Scholar 

  • Nichols NM, Benner JS, Martin DD, Evans TC Jr (2003) Zinc ion effects on individual Ssp DnaE intein splicing steps: regulating pathway progression. Biochemistry 42:5301–5311

    Article  PubMed  CAS  Google Scholar 

  • Nogami S, Satow Y, Ohya Y, Anraku Y (1997) Probing novel elements for protein splicing in the yeast VmaI protozyme: a study of replacement mutagenesis and intragenic suppression. Genetics 147:73–85

    PubMed  CAS  Google Scholar 

  • Noren CJ, Wang J, Perler FB (2000) Dissecting the chemistry of protein splicing and its applications. Angew Chem Int Ed 39:451–466

    Article  Google Scholar 

  • Paulus H (1998) The chemical basis of protein splicing. Chem Soc Rev 27:375–386

    Article  CAS  Google Scholar 

  • Paulus H (2000) Protein splicing and related forms of protein autoprocessing. Annu Rev Biochem 69:447–496

    Article  PubMed  CAS  Google Scholar 

  • Paulus H (2001) Inteins as enzymes. Bioorg Chem 29:119–129

    Article  PubMed  CAS  Google Scholar 

  • Perler FB (2002) InBase, the intein database. Nucleic Acids Res 30:383–384

    Article  PubMed  CAS  Google Scholar 

  • Perler FB, Xu M-Q, Paulus H (1997) Protein splicing and autoproteolysis mechanisms. Curr Opin Chem Biol 1:292–299

    Article  PubMed  CAS  Google Scholar 

  • Pietrokovski S (1994) Conserved sequence features of inteins (protein introns) and their use in identifying new inteins and related proteins. Protein Sci 3:2340–2350

    Article  PubMed  CAS  Google Scholar 

  • Pietrokovski S(1998) Modular organization of inteins and C-terminal autocatalytic domains. Protein Sci 7:64–71

    Google Scholar 

  • Poland BW, Xu M-Q, Quiocho FA (2000) Structural insights into the protein splicing mechanism of PI-SceI. J Biol Chem 275:16408–16413

    Article  PubMed  CAS  Google Scholar 

  • Porter JA, Ekker SC, Park WJ, Kessler DP, Young KE, Chen CH, Ma Y, Woods AS, Cotter RJ, Koonin EV, Beachy PA (1996a) Hedgehog patterning activity: role of lipophilic modification mediated by the carboxy-terminal autoprocessing domain. Cell 86:21–34

    Article  PubMed  CAS  Google Scholar 

  • Porter JA, Young KE, Beachy PA (1996b) Cholesterol modification of hedgehog signaling proteins in animal development. Science 274:255–259

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran GM, Mitra AK (1976) An explanation for the rare occurrence of cis peptide units in proteins and polypeptides. J Mol Biol 107:85–92

    PubMed  CAS  Google Scholar 

  • Romanelli A, Shekhtman A, Cowburn D, Muir TW (2004) Semisynthesis of a segmental isotopically labeled protein splicing precursor: NMR evidence for an unusual peptide bond at the N-extein-intein junction. Proc Natl Acad Sci USA 101:6397–6402

    Article  PubMed  CAS  Google Scholar 

  • Shao Y, Paulus H (1997) Protein splicing: estimation of the rate of O-N and S-N acyl rearrangements, the last step of the splicing process. J Peptide Res 50:193–198

    CAS  Google Scholar 

  • Shao Y, Xu M-Q, Paulus H (1995) Protein splicing: characterization of the aminosuccimide residue at the carboxyl terminus of the excised intervening sequence. Biochemistry 34:10844–10850

    Article  PubMed  CAS  Google Scholar 

  • Shao Y, Xu M-Q, Paulus H (1996) Protein splicing: evidence for an N-O acyl rearrangement as the initial step in the splicing process. Biochemistry 35:3810–3815

    Article  PubMed  CAS  Google Scholar 

  • Shingledecker K, Jiang S-Q, Paulus H (1998) Molecular dissection of the Mycobacterium tuberculosis RecA intein: design of a minimal intein and of a trans-splicing system involving two intein fragments. Gene 207:187–195

    Article  PubMed  CAS  Google Scholar 

  • Shingledecker K, Jiang S-Q, Paulus H (2000) Reactivity of the cysteine residues in the protein splicing active center of the Mycobacterium tuberculosis RecA intein. Arch Biochem Biophys 375:138–144

    Article  PubMed  CAS  Google Scholar 

  • Southworth MW, Adam E, Panne D, Byer R, Kautz R, Perler FB (1998) Control of protein splicing by intein fragment reassembly. EMBO J 17:918–926

    Article  PubMed  CAS  Google Scholar 

  • Southworth MW, Amaya K, Evans TC, Xu M-Q, Perler FB (1999) Purification of proteins fused to either the amino or carboxy terminus of the Mycobacterium xenopii gyrase A intein. Biotechniques 27:110–120

    PubMed  CAS  Google Scholar 

  • Southworth MW, Benner J, Perler FB (2000) An alternative protein splicing mechanism for inteins lacking an N-terminal nucleophile. EMBO J 19:1–8

    Article  Google Scholar 

  • Southworth MW, Perler FB (2002) Protein splicing of the Deinococcus radiodurans strain R1 Snf2 intein. J Bacteriol 184:6387–6388

    Article  PubMed  CAS  Google Scholar 

  • Southworth MW, Yin J, Perler FB (2004) Rescue of protein splicing activity from a Magnetospirillum magnetotacticum intein-like element. Biochem Soc Trans 32:250–254

    Article  PubMed  CAS  Google Scholar 

  • Telenti A, Southworth M, Alcaide F, Daugelat S, Jacobs WR, Perler FB (1997) The Mycobacterium xenopi GyrA protein splicing element: characterization of a minimal intein. J Bacteriol 179:6378–6382

    PubMed  CAS  Google Scholar 

  • Voorter CEM, de Haard-Hoekman WA, van den Oetelaar PJM, Bloemendal H, de Jong WW (1988) Spontaneous peptide bond cleavage in aging α-crystallin through a succinimide intermediate. J Biol Chem 263:19020–19023

    PubMed  CAS  Google Scholar 

  • Wang S, Liu X-Q (1997) Identification of an unusual intein in chloroplast ClpP protease of Chlamydomonas eugametos. J Biol Chem 272:11869–11873

    PubMed  CAS  Google Scholar 

  • Wood DW, Wu W, Belfort G, Derbyshire V, Belfort M (1999) A genetic system yields self-cleaving inteins for bioseparations. Nat Biotechnol 17:889–892

    PubMed  CAS  Google Scholar 

  • Wu H, Hu Z, Liu X-Q (1998) Protein trans-splicing by a split intein encoded in a split DnaE gene of Synechocystis sp. PCC6803. Proc Natl Acad Sci USA 95:9226–9231

    PubMed  CAS  Google Scholar 

  • Xu M-Q, Perler FB (1996) The mechanism of protein splicing and its modulation by mutation. EMBO J 15:5146–5153

    PubMed  CAS  Google Scholar 

  • Xu M-Q, Southworth MW, Mersha FB, Hornstra LJ, Perler FB (1993) In vitro protein splicing of purified precursor and the identification of a branched intermediate. Cell 75:1371–1377

    Article  PubMed  CAS  Google Scholar 

  • Xu M-Q, Comb DG, Paulus H, Noren CJ, Shao Y, Perler FB (1994) Protein splicing: an analysis of the branched intermediate and its resolution by succinimide formation. EMBO J 13:5517–5522

    PubMed  CAS  Google Scholar 

  • Yamamoto K, Low B, Rutherford SA, Rajagopalan M, Madiraju MV (2001) The Mycobacterium avium-intracellulare complex dnaB locus and protein intein splicing. Biochem Biophys Res Commun 280:896–903

    Google Scholar 

  • Yamazaki T, Otomo T, Oda N, Kyogoku Y, Uegaki K, Ito N, Ishino Y, Nakamura H (1998) Segmental isotope labeling for protein NMR using peptide splicing. J Am Chem Soc 120:5591–5592

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mills, K.V., Paulus, H. (2005). Biochemical Mechanisms of Intein-Mediated Protein Splicing. In: Belfort, M., Wood, D.W., Stoddard, B.L., Derbyshire, V. (eds) Homing Endonucleases and Inteins. Nucleic Acids and Molecular Biology, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29474-0_14

Download citation

Publish with us

Policies and ethics