Skip to main content

Erneuerung und Regeneration

  • Chapter
  • 3768 Accesses

Part of the book series: Springer-Lehrbuch ((SLB))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Zu Kapitel 24: Regeneration

  • Feretti P (ed) (1998) Cellular and molecular basis of regeneration from invertebrates to humans. Wiley, Weinheim, pp 111–134

    Google Scholar 

  • Fini ME (2000) Vertebrate eye development. Springer, Berlin Heidelberg

    Google Scholar 

  • Goss RJ (1969) Principles of Regeneration. Academic Press, New York

    Google Scholar 

  • Heber-Katz E (2004) Regeneration: stem cells and beyond. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Morgan TH (1901) Regeneration. MacMillan, New York

    Google Scholar 

Allgemeines, Musterbildung, Faktoren

  • Agata K (2003) Regeneration and gene regulation in planarians. Curr Opin Genet Dev 13:492–496

    Article  PubMed  CAS  Google Scholar 

  • Baguna J (1998) Planarians. In: Feretti P (ed) Cellular and molecular basis of regeneration from invertebrates to humans. Wiley, Weinheim, pp 135–165

    Google Scholar 

  • Baguna J, Salo E, Auladell C (1989) Regeneration and pattern formation in planarians. III. Evidence that neoblasts are totipotent stem cells and the source of blastema cells. Development 107:77–86

    Google Scholar 

  • Bosch TCG (1998) Hydra. In: Feretti P (ed) Cellular and molecular basis of regeneration from invertebrates to humans. Wiley, Weinheim, pp 111–134

    Google Scholar 

  • Brockes JP (1997) Amphibian limb regeneration: rebuilding a complex structure. Science 276:81–87

    Article  PubMed  CAS  Google Scholar 

  • Carlson BM (1998) Development and regeneration with special emphasis on the amphibian limb. In: Feretti P (ed) Cellular and molecular basis of regeneration from invertebrates to humans. Wiley, Weinheim, pp 45–61

    Google Scholar 

  • Cash DE et al (1998) Identification of newt connective tissue growth factor as a target of retinoid regulation in limb blastema cells. Gene 222:119–124

    Article  PubMed  CAS  Google Scholar 

  • Clarke JDW, Ferretti P (1998) CNS regeneration in lower vertebrates. In: Feretti P (ed) Cellular and molecular basis of regeneration from invertebrates to humans. Wiley, Weinheim, pp 255–269

    Google Scholar 

  • Crawford K, Vincenti DM (1998) Retinoic acid and thyroid hormone may function through similar and competitive pathways in regenerating axolotls. J Exp Zool 282:724–738

    Article  PubMed  CAS  Google Scholar 

  • Christen B, Slack JM (1997) FGF-8 is associated with anteroposterior patterning and limb regeneration in Xenopus. Dev Biol 192:455–466

    Article  PubMed  CAS  Google Scholar 

  • Christen B et al (2003) Regeneration-specific expression patterns of three Xox genes. Dev Dyn 226:349–355

    Article  PubMed  CAS  Google Scholar 

  • Del-Rio-Tsonis K et al (1998) Regulation of lens regeneration by fibroblast growth factor receptor 1. Dev Dyn 213:140–146

    Article  PubMed  CAS  Google Scholar 

  • Dinsmore CE, Mescher AL (1998) The role of the nervous system in regeneration. In: Feretti P (ed) Cellular and molecular basis of regeneration from invertebrates to humans. Wiley, Weinheim, pp 79–108

    Google Scholar 

  • Endo T, Bryant SV, Gardiner DM (2004) A stepwise model system for limb regeneration. Dev Biol 270:135–145

    Article  PubMed  CAS  Google Scholar 

  • Galliot B, Schmid V (2002) Cnidarians as a model system for understanding evolution and regeneration. Int J Dev Biol 46:39–48

    PubMed  Google Scholar 

  • Gardiner DM, Bryant SV (1998) The tetrapod limb. In: Feretti P (ed) Cellular and molecular basis of regeneration from invertebrates to humans. Wiley, Weinheim, pp 187–205

    Google Scholar 

  • Holstein TW, Hobmayer E, Technau U (2003) Cnidarians: An evolutionarily conserved model system for regeneration? Developmental Dynamics 226:257–267

    Article  PubMed  CAS  Google Scholar 

  • Kondoh H et al (2004) Interplay of Pax6 and SOX2 in lens development as a pradigm of genetic switch mechanisms for cell differentiation. Int J Dev Biol 48:819–827

    Article  PubMed  CAS  Google Scholar 

  • Kostakopoulou K et al (1997) Local origin of cells in FGF4 induced outgrowth of amputated chick wing stumps. Int J Dev Biol 41:747–750

    PubMed  CAS  Google Scholar 

  • Lang RA (2004) Pathways regulating lens induction in the mouse. Int J Dev Biol 48:783–792

    Article  PubMed  CAS  Google Scholar 

  • Maden M (1980) Intercalary regeneration in the amphibian limb and the rule of distal transformation. J Embryol Exp Morphol 56:201–209

    PubMed  CAS  Google Scholar 

  • Maden M (1993) The homeotic transformation of tails into limbs in Rana temporaria by retinoids. Dev Biol 159:379–391

    Article  PubMed  CAS  Google Scholar 

  • Maden M, Hind M (2003) Retinoic acid, a regeneration-inducing molecule. Dev Dyn 226:237–244

    Article  PubMed  CAS  Google Scholar 

  • Martin P, Parkhurst SM (2004) Parallels between tissue repair and embryo morphogenesis. Development 131:3021–3034

    Article  PubMed  CAS  Google Scholar 

  • Pecorino LT, Entwistle A, Brockes JP (1996) Activation of retinoic acid receptor isoform mediates proximo-distal respecification. Curr Biol 6:563–569

    Article  PubMed  CAS  Google Scholar 

  • Salo E, Baguna J (1989) Regeneration and pattern formation in planarians. II. Local origin and role of cell movements in blastema formation. Development 107:69–76

    Google Scholar 

  • Scadding SR, Maden M (1994) Retinoic acid gradients during limb regeneration. Dev Biol 162:608–617

    Article  PubMed  CAS  Google Scholar 

  • Simon A, Brockes JP (2002) Thrombin activation of S-phase reentry by cultured pigmented epithelial cells of adult newt iris. Exp Cell Res 281:101–106

    Article  PubMed  CAS  Google Scholar 

  • Simon HG et al (1997) A novel family of T-box genes in urodele amphibian limb development and regeneration: candidate genes involved in vertebrate forelimb/hindlimb patterning. Development 124:1355–1366

    PubMed  CAS  Google Scholar 

  • Stocum DL (1996) A conceptual framework for analyzing axial patterning in regenerating urodele limbs. Int J Dev Biol 40:773–783

    PubMed  CAS  Google Scholar 

  • Watanabe M et al (1982) Reconstitution of embryo-like structures from sea urchin embryo cells. Differentiation 21:79–85

    CAS  Google Scholar 

  • Will B et al (1998) Regeneration in brain and spinal cord. In: Feretti P (ed) Cellular and molecular basis of regeneration from invertebrates to humans. Wiley, Weinheim 1998, pp 111–134

    Google Scholar 

Stammzellen und Regeneration

  • Cort S et al (2004) Somatic stem cell research for neural repair: current evidence and emerging perspectives. J Cell Mol Med 8:329–337

    Google Scholar 

  • Czyk J et al (2004) Potential of embryonic and adult stem cells in vitro. Biol Chem 384:1391–409

    Google Scholar 

  • Moshiri A et al (2004) Retinal stem cells and regeneration. Int J Dev Biol 48:1003–1014

    Article  PubMed  Google Scholar 

  • Müller WA et al (2004) Totipotent migratory stem cells in a hydroid. Dev Biol 275:215–224

    Article  PubMed  CAS  Google Scholar 

  • Peter R (2004) Planarien:neue Tiere aus Stammzellen. BIUZ 34:220–228

    Article  Google Scholar 

  • Rinkevich B et al (1995) Whole-body protochordate regeneration from totipotent blood cells. Proc Natl Acad Sci USA 92:7695–7699

    Article  PubMed  CAS  Google Scholar 

  • Tsonis PA (2004) Stem cells from differentiated cells. Mol Interv 4:81–83

    Article  PubMed  CAS  Google Scholar 

Dedifferenzierung, Transdifferenzierung

  • Brockes JP (1998) Progenitor cells for regeneration: origin by reversal of the differentiated state. In: Feretti P (ed) Cellular and molecular basis of regeneration from invertebrates to humans. Wiley, Weinheim, pp 63–77

    Google Scholar 

  • Brockes JP, Kumar A (2002) Plasticity and reprogramming of differentiated cells in amphibian regeneration. Nat Rev Mol Cell Biol 3:566–574

    Article  PubMed  CAS  Google Scholar 

  • Eguchi G (1988) Cellular and molecular background of Wolffian lens regeneration. Cell Diff Dev 25:147–158

    Article  CAS  Google Scholar 

  • Eguchi G (1998) Transdifferentiation as the basis of eye lens regeneration. In: Feretti P (ed) Cellular and molecular basis of regeneration from invertebrates to humans 1998:207–228

    Google Scholar 

  • Hadorn E (1968) Transdetermination in cells. Sci Am 219(5):110–120

    Article  PubMed  CAS  Google Scholar 

  • Imokowa Y et al (2004) Distinctive expression of Myf5 in relation to differentiation and plasticity of newt muscle cells. Int J Dev 48(4):285–291

    Article  Google Scholar 

  • McGann CJ et al (2001) Mammalian myotube dedifferentiation induced by newt regeneration extract. Proc Natl Acad Sci USA 98:13699–13704

    Article  PubMed  CAS  Google Scholar 

  • Muller P et al (2003) Evolutionary aspects of developmentally regulated helic-loop-helix transcription factors in striated muscle of jellyfish. Dev Biol 255:216–229

    Article  PubMed  CAS  Google Scholar 

  • Odelberg SJ et al (2000) Dedifferentiation of mammalian myotubes induced by msx1. Cell 103(7):1099–1109

    Article  PubMed  CAS  Google Scholar 

  • Panagiotis AT (2004) A newt’s eye view of lens regeneration. Int J Dev Biol 48:975–980

    Article  Google Scholar 

  • Perez OD et al (2002) Inhibition and reversal of myogenic differentiation by purine-based microtubule assembly inhibitors. Chem Biol 9:475–483

    Article  PubMed  CAS  Google Scholar 

  • Reddy T, Kablar B (2004) Evidence for the involvement of neurotrophins in muscle transdifferentiation and acetylcholine receptor transformation in the esophagus of Myf5(-/-): MyoD(-/-) and NT-3(-/-) embryos. Dev Dyn 231:683–692

    Article  PubMed  CAS  Google Scholar 

  • Rosania GR et al (2000) Myoseverin, a microtubule-binding molecule with novel cellular effects. Nature Biotechnol 18:304–308

    Article  CAS  Google Scholar 

  • Schmid V, Alder H (1984) Isolated, mononucleated, striated muscle can undergo pluripotent transdifferentiation and form a complex regenerate. Cell 38:801–809

    Article  PubMed  CAS  Google Scholar 

  • Schmid Vet al (1988) Transdifferentiation from striated muscle of medusae in vitro. In: Eguchi G et al (eds) Regulatory mechanisms in developmental processes. Elsevier, Ireland, pp 137–146

    Google Scholar 

  • Schmid V, Plickert G (1990) The proportion altering factor (PAF) and the in vitro transdifferentiation of isolated striated muscle of jellyfish into nerve cells. Differentiation 44:95–102

    PubMed  CAS  Google Scholar 

  • Shannon JO et al (2000) Dedifferentiation of mammalian myotubes induced by msx1. Cell 103:1099–1109

    Article  Google Scholar 

  • Simon A, Brockes JP (2002) Thrombin activation of S-phase reentry by cultured pigmented epithelial cells of adult newt iris. Exp Cell Res 281:101–106

    Article  PubMed  CAS  Google Scholar 

  • Song L, Tuan RS (2004) Transdifferentiation potential of human mesenchymal stem cells derived from bone marrow. FASEB J18:980–982

    Google Scholar 

  • Tsonis PA et al (2004) A newt’s eyey view of lens regeneration. Int J Dev Biol 48:975–980

    Article  PubMed  Google Scholar 

  • Tsonis PA (2004) Stem cells from differentiated cells. Mol Interv 4:81–83

    Article  PubMed  CAS  Google Scholar 

  • Velloso CP et al (2001) Mammalian postmitotic nuclei reenter the cell cycle after serum stimulation in newt/mouse hybrid myotubes. Curr 11(11):855–858

    Article  CAS  Google Scholar 

  • Yasuda K (2004) A life in research on lens regeneration and transdifferentiation. An interview with Goro Eguchi. Int J Dev Biol 48(8-9):695–700

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2006). Erneuerung und Regeneration. In: Entwicklungsbiologie und Reproduktionsbiologie von Mensch und Tieren. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29472-4_24

Download citation

Publish with us

Policies and ethics