Skip to main content

Robot Vision: A Holistic View

  • Conference paper
Climbing and Walking Robots

Abstract

It is well understood that artificial vision enables a wide range of applications from visual inspection, visual measurement, visual recognition, visual surveillance, to visual guidance of robot systems in real-time and real environment. However, in the literature, there is no definite answer to what artificial (or robot) vision should be, or how it should be. This dilemma is largely due to the fact that artificial (or robot) vision is being actively pursued by scientists of various backgrounds in both social and natural sciences. In this paper, the intention is to present a new way of re-organizing various concepts, principles and algorithms of artificial vision. In particular, we propose a function-centric view comprising these five coherent categorizations, namely: (a) instrumental vision, (b) behavior-based vision, (c) reconstructive vision, (d) model-based vision, and (e) cognitive vision. This function-centric view abandons the long-standing notions of low-, intermediate- and high-level vision, as they are more illusive than insightful. The contribution of this article is two-fold. First, it is time to assess and consolidate the current achievements in artificial (or robot) vision. Secondly, it is important to objectively state the remaining challenges in order to guide the future investigations in artificial (or robot) vision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grimson, W. E. L.: Aspects of a Compuational Theory of Human Stereo Vision. DARPA Image Understanding Workshop (1980) 128–149.

    Google Scholar 

  2. Biederman, G.: Recognition by Components: A Theory of Human Image Understanding. Psychological Review 94 (1987) 115–147.

    Article  Google Scholar 

  3. Hummel, J. E., Biederman, I.: Dynamic Binding in a Neural Network for Shape Recognition. Psychological Review 99 (1992) 480–517.

    Article  Google Scholar 

  4. Crick, F. and Koch, C.: The Astonishing Hypothesis. Simon & Schuster (1994).

    Google Scholar 

  5. Kandel, E. R., Schwartz, J. H., and Jessel, T. M.: Essentials of Neural Science and Behavior. McGRAW-Hill (1995).

    Google Scholar 

  6. Zacks, J. M., Mires, J., Tverski, B. and Hazeltine, E.: Mental Spatial Transformation of Objects and Perspective. Spatial Cognition and Computation 2 (2000) 315–332.

    Article  Google Scholar 

  7. Edelman, S.: Constraining the Neural Representation of the Visual World. Trends in Cognitive Sciences 6(3) (2002) 125–131.

    Article  Google Scholar 

  8. Shiffrin, R.: Modeling Memory and Perception. Cognitive Science 27 (2004) 341–378.

    Google Scholar 

  9. Jain, R., Kasturi, R. and Schunck, B. G.: Machine Vision. McGRAW-Hill (1995).

    Google Scholar 

  10. Shirai, Y. and Inoue, H.: Guiding a Robot by Visual Feedback in Assembly Tasks. Pattern Recognition 5 (1973) 99–108.

    Article  Google Scholar 

  11. Sanderson, A. C., Weiss, L. E. and Neuman, C. P.: Dynamic Sensor-based Control of Robots with Visual Feedback. IEEE Transaction on Robotics and Automation 3 (1987) 404–417.

    Google Scholar 

  12. Espiau, B., Chaumette and Rives, P.: A New Approach to Visual Servoing in Robotics. IEEE Transaction on Robotics and Automation 8 (1992) 313–326.

    Google Scholar 

  13. Holinghurst, N. and Cipolla, R.: Uncalibrated Stereo Hand-Eye Coordination. Fourth British Conference on Machine Vision (1993) 783–790.

    Google Scholar 

  14. Hosoda, H. and Asada, M.: Versatile Visual Servoing without Knowledge of True Jacobian. IEEE International Conference on Robots and Systems (1994) 186–193.

    Google Scholar 

  15. Nasisi, O. and Carelli, R.: Adaptive Servo Visual Robot Control. Robotics and Autonomous Systems 43 (2003) 51–78.

    Article  Google Scholar 

  16. Xie, M.: Fundamentals of Robotics: Linking Perception to Action. World Sceintific (2003).

    Google Scholar 

  17. Marr, D.: Vision. Freeman (1982).

    Google Scholar 

  18. Ohta, Y. and Kanade, T.: Stereo by Intra-and Inter-baseline Search using Dynamic Programming. IEEE Trans. on PAMI 7 (1985) 139–154.

    Google Scholar 

  19. Faugeras, O.: Three-Dimensional Computer Vision. The MIT Press (1993).

    Google Scholar 

  20. Seitz, S. and Dyer, C.: Photorealistic Scene Reconstruction by Voxel Coloring. IEEE International Conference on Computer Vision and Pattern Recognition (1997) 1067–1073.

    Google Scholar 

  21. Hartley, R. I. and Zisseman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press (1998).

    Google Scholar 

  22. Zhang, Y. and Xie, M.: New Principle for Passive 3D Scanner. Third World Automation Congress (1998) 1–6.

    Google Scholar 

  23. Ziegler, R., Matusik, W., Pfsiter, H., McMillan, L.: 3D Reconstruction Using Labeled Image Regions. Eurographics Symposium on Geometry Processing (2003) 1–12.

    Google Scholar 

  24. Zhang, Z. Y.: Determining the Epipolar Geometry and Its Uncertainty: A Review. International Journal of Computer Vision 27 (1998) 161–195.

    Article  Google Scholar 

  25. Canny, J. F.: A Computational Approach to Edge Detection. IEEE Trans. on PAMI 8 (1986) 769–798.

    Google Scholar 

  26. Kadir, T. Brady, M.: Scale, Saliency and Image Description. International Journal of Computer Vision 45 (2001) 83–105.

    Article  MATH  Google Scholar 

  27. Guo, C. E., Zhu, S. C., Wu, Y. N.: Modeling Visual Patterns by Integrating Descriptive and Generative Methods. International Journal of Computer Vision 53 (2003) 5–29.

    Article  Google Scholar 

  28. Lucas, B. and Kanade, T.: An Iterative Image Registration Technique with an Application to Stereo Vision. International Joint Conference on Artificial Intelligence (1981) 674–679.

    Google Scholar 

  29. Xie, M.: A Cooperative Strategy for the Matching of Multiple-level Edge Primitives. Image and Vision Computing 13 (1995) 89–99.

    Article  Google Scholar 

  30. Hager, G. D., Belhumeur, P. N.: Efficient Region Tracking with Parametric Models of Geometry and Illumination. IEEE Trans. on PAMI 20 (1998) 1025–1039.

    Google Scholar 

  31. Nevatia, Y. and Binford, T. O.: Description and Recognition of Curved Objects. Artificial Intelligence 8 (1977) 77–98.

    Article  MATH  Google Scholar 

  32. Kanade, T.: Model Representation and Control Structures in Image Understanding. IJCAI-5 (1977) 1074–1082.

    Google Scholar 

  33. Lowe, D.: Solving for the Parameters of Object Models from Image Descriptions. DARPA Image Understanding Workshop (1980) 121–127.

    Google Scholar 

  34. Brooks, R. A.: Model-based Computer Vision. UMI Research Press (1981).

    Google Scholar 

  35. Oshima, M. and Shirai, Y.: Object Recognition Using 3-D Information. IEEE transaction on Pattern Analysis and Machine Intelligence 5 (1983) 353–361.

    Article  Google Scholar 

  36. Fisher, R. B.: Using Surfaces and Object Models to Recognise Partially Obscured Objects. International Joint Conference on Artificial Intelligence (1983) 989–995.

    Google Scholar 

  37. Grimson, W. E. L. and Lozano-Perez, T.: Model-Based Recognition and Localisation From Sparse Range or Tactile Data. International Journal of Robotics Research 3 (1984) 3–35.

    Google Scholar 

  38. Horaud, P. and Bolles, R. C.: 3DPO’s Strategy for Matching Three-dimensional Objects in Range Data. International Conference on Robotics (1984) 78–85.

    Google Scholar 

  39. Faugeras, O. and Hebert, M.: The Representation, Recognition and Locating of 3-D Objects. International Journal of Robotics Research 5 (1986) 27–52.

    Google Scholar 

  40. Marshall, A. D. and Martin, R. R.: Computer Vision, Models and Inspection. World Scientific (1992).

    Google Scholar 

  41. Chen, C. H., Pau, L. F. and Wang, P. S. P. (Editors): Handbook of Pattern Recognition and Computer Vision. World Scientific (1993).

    Google Scholar 

  42. Rohr, K.: Towards Model-based Recognition of Human Movements in Image Sequences. CVGIP 59 (1994) 95–115.

    Google Scholar 

  43. Zisserman, A., Forsyth, D. Mundy, J., Rothwell, C., Liu, J. and Pillow N.: 3D Object Recognition Using Invariance. Artificial Intelligence 78 (1995) 239–288.

    Article  Google Scholar 

  44. Ullman, S.: High-level Vision. The MIT Press (1996).

    Google Scholar 

  45. Grimson, W. E. L.: Introduction: Object Recognition at MIT. International Journal of Computer Vision 21 (1997) 5–8.

    Article  Google Scholar 

  46. Tarr, M. J. and Bulthoff, H. H.: Image-based Object Recognition in Man, Monkey and Machine. Cognition 67 (1998) 1–20.

    Google Scholar 

  47. Tan, T. N., Sullivan, G. D. and Baker, K. D.: Model-based Localisation and Recognition of Road Vehicles. International Journal of Computer Vision 27 (1998) 5–25.

    Article  Google Scholar 

  48. Belongie, S., Malik, J. and Puzicha, J.: Shape Matching and Object Recognition Using Shape Context. IEEE Trans. on PAMI 24 (2002) 509–522.

    Google Scholar 

  49. Cyr, C. M. and Kimia, B. B.: A Similarity-based Aspect-Graph Approach to 3D Object Recognition. International Journal of Computer Vision. 57 (2004) 5–22.

    Article  Google Scholar 

  50. Binford, T. O.: Visual Perception by Computer. IEEE Systems Science and Cybernetics Conference (1971).

    Google Scholar 

  51. Requicha, A. A. G.: Representations for Rigid Solids: Theory, Methods and Alternative Approaches. ACM Computing Surveys 12 (1980) 437–464.

    Article  Google Scholar 

  52. Cootes, T. F., Edwards, G. J., Taylor, C. J.: Active Appearance Models. European Conference on Computer Vision (1998) 484–498.

    Google Scholar 

  53. Denzler, J.: Knowledge Based Image and Speech Analysis for Service Robots. Workshop on Integration of Speech and Image Understanding, International Conference on Computer Vision (1999).

    Google Scholar 

  54. Lungarella, M., Metta, G., Pfeifer, R. and Sandini, G.: Developmental Robotics: A Survey. Connection Science 0 (2004) 1–40.

    Google Scholar 

  55. Weng, J.: Developmental Robotics: A Theory and Experiments. International Journal of Humanoid Robotics 2 (2004) 199–236.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xie, M. (2005). Robot Vision: A Holistic View. In: Climbing and Walking Robots. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29461-9_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-29461-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22992-6

  • Online ISBN: 978-3-540-29461-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics