Skip to main content

How to Assess the Abundance and Diversity of Mobile Genetic Elements in Soil Bacterial Communities?

  • Chapter
Nucleic Acids and Proteins in Soil

Part of the book series: Soil Biology ((SOILBIOL,volume 8))

13.5 Conclusions

Evidence is mounting that MGE play an important role in the evolution and adaptability of bacterial species. The rapid accumulation of bacterial genome sequences and the development of powerful tools has allowed, and will continue to allow, new insights into the horizontal gene pool, i.e. the horizontally transferred genetic modules and their mobile genetic vehicles. Identification of the flexible part of bacterial genomes — in contrast to that part which is shared by most strains of a species — will clarify what the cohesive factors forming bacterial species are. The capacity of soil microorganisms to sample the horizontal gene pool provides bacteria with the ability to rapidly adapt to ever-changing environments and is a major driving force of microbial diversity in soil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alonso A, Sánchez P, Martínez JL (2001) Environmental selection of antibiotic resistance genes. Environ Microbiol 3:1–9

    Article  PubMed  CAS  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    PubMed  CAS  Google Scholar 

  • Ashelford KE, Day MJ, Fry JC (2003) Elevated abundance of bacteriophage infecting bacteria in soil. Appl Environ Microbiol 69:285–289

    Article  PubMed  CAS  Google Scholar 

  • Bale MJ, Day MJ, Fry JC (1988) Novel method for studying plasmid transfer in undisturbed river epilithon. Appl Environ Microbiol 54:2756–2758

    PubMed  CAS  Google Scholar 

  • Beaber JW, Hochhut B, Waldor MK (2004) SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature 427:72–74

    Article  PubMed  CAS  Google Scholar 

  • Buell CR et al. (2003) The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proc Natl Acad Sci USA 100:10181–10186

    Article  PubMed  CAS  Google Scholar 

  • Burrus V, Waldor MK (2004) Shaping bacterial genomes with integrative and conjugative elements. Res Microbiol 155:376–386

    Article  PubMed  CAS  Google Scholar 

  • Canchaya C, Proux C, Fournous G, Bruttin A, Brüssow H (2003) Prophage genomics. Microbiol Mol Biol Rev 67:238–276

    Article  PubMed  CAS  Google Scholar 

  • Couturier M, Bex F, Berquist PL, Maas WK (1988) Identification and classification of bacterial plasmids. Microbiol Rev 52:375–395

    PubMed  CAS  Google Scholar 

  • Day T, Young KA (2004) Competitive and facilitative evolutionary diversification. BioScience 54:101–109

    Article  Google Scholar 

  • De la Cruz F, Davies J (2000) Horizontal gene transfer and the origin of species: lessons from bacteria. Trends Microbiol 8:128–133

    Article  PubMed  Google Scholar 

  • Dobrindt U, Hochhut B, Hentschel U, Hacker J (2004) Genomic islands in pathogenic and environmental microorganisms. Nature 2:414–424

    CAS  Google Scholar 

  • Dos Santos VAPM, Heim S, Moore ERB, Strätz M, Timmis KN (2004) Insights into the genomic basis of niche specificity of Pseudomonas putida KT2440. Environ Microbiol 6:1264–1268

    Article  PubMed  CAS  Google Scholar 

  • Drønen AK, Torsvik V, Goksøyr J, Top EMT (1998) Effect of mercury addition on plasmid incidence and gene mobilising capacity in bulk soil. FEMS Microbiol Ecol 27:381–394

    Google Scholar 

  • Drønen K, Torsvik V, Top E (1999) Comparison of the plasmid types obtained by two distantly related recipients in biparental exogenous plasmid isolations from soil. FEMS Microbiol Lett 176:105–110

    Article  Google Scholar 

  • Fry JC (2004) Culture-dependent microbiology. In: Bull AT (ed) Microbial diversity and bioprospecting. ASM Press, Washington, DC, pp 80–87

    Google Scholar 

  • Galibert F et al. (2001) The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293:668–672

    Article  PubMed  CAS  Google Scholar 

  • Götz A, Smalla K (1997) Manure enhances plasmid mobilization and survival of Pseudomonas putida introduced into field soil. Appl Environ Microbiol 63:1980–1986

    PubMed  Google Scholar 

  • Götz A, Pukall R, Smit E, Tietze E, Prager R, Tschäpe H, Van Elsas JD, Smalla K (1996) Detection and characterization of broad-host-range plasmids in environmental bacteria by PCR. Appl Environ Microbiol 62:2621–2628

    PubMed  Google Scholar 

  • Greated A, Thomas CM (1999) A pair of PCR primers for IncP9-plasmids. Microbiology 145:3003–3004

    PubMed  Google Scholar 

  • Hacker J, Blum-Oehler G, Mühldorfer I, Tschäpe H (1997) Pathogenicity islands of virulent bacteria, structure, function and impact on microbial evolution. Mol Microbiol 23:1089–1097

    Article  PubMed  CAS  Google Scholar 

  • Hacker J, Carniel E (2001) Ecological fitness, genomic islands and bacterial pathogenicity. EMBO J 2:376–381

    CAS  Google Scholar 

  • Hacker J, Hentschel U, Dobrindt U (2003) Prokaryotic chromosomes and disease. Science 301:790–793

    Article  PubMed  CAS  Google Scholar 

  • Hall RM, Collis CM (1995) Mobile gene cassettes and integrons: capture and spread of genes by site-specific recombination. Mol Microbiol 15:593–600

    PubMed  CAS  Google Scholar 

  • Heuer H, Krögerrecklenfort E, Egan S, Van Overbeek LS, Guillaume G, Nikolakopoulou TL, Wellington EMH, Van Elsas JD, Collard JM, Karagouni AD, Smalla K (2002) Gentamicin resistance genes in environmental bacteria: prevalence and transfer. FEMS Microbiol Ecol 42:289–302

    Article  CAS  Google Scholar 

  • Hill KE, Weightman AJ, Fry JC (1992) Isolation and screening of plasmids from the epilithon which mobilize recombinant plasmid pD10. Appl Environ Microbiol 58:1292–1300

    PubMed  CAS  Google Scholar 

  • Holmes AJ, Holley MP, Mahon A, Nield B, Gillings M, Stokes HW (2003) Recombination activity of a distinctive integron-gene cassette system associated with Pseudomonas stutzeri populations in soil. J Bacteriol 185:918–928

    Article  PubMed  CAS  Google Scholar 

  • Koonin EV, Makarova KS, Aravind L (2001) Horizontal gene transfer in prokaryotes: quantification and classification. Annu Rev Microbiol 55:709–742

    Article  PubMed  CAS  Google Scholar 

  • Krasowiak R, Smalla K, Sokolov S, Kosheleva I, Sevastyanovich Y, Titok M, Thomas CM (2002) PCR primers for detection and characterisation of IncP-9 plasmids. FEMS Microbiol Ecol 42:217–225

    Article  CAS  Google Scholar 

  • Lan R, Reeves PR (2000) Intraspecies variation in bacterial genomes: the need for a species genome concept. Trends Microbiol 8:396–401

    Article  PubMed  CAS  Google Scholar 

  • Lilley AK, Bailey MJ (1997a) Impact of plasmid pQBR103 acquisition and carriage on the phytosphere fitness of Pseudomonas fluorescens SBW25: burden and benefit. Appl Environ Microbiol 63:1584–1587

    PubMed  CAS  Google Scholar 

  • Lilley AK, Bailey MJ (1997b) The acquisition of indigenous plasmids by a genetically marked pseudomonad population colonizing the sugar beet phytosphere is related to local environmental conditions. Appl Environ Microbiol 63:1577–1583

    PubMed  CAS  Google Scholar 

  • Lilley AK, Fry JC, Day MJ, Bailey MJ (1994) In situ transfer of an exogenously isolated plasmid between Pseudomonas spp. in sugar beet rhizosphere. Microbiology 140:27–33

    CAS  Google Scholar 

  • Lilley AK, Bailey MJ, Day MJ, Fry JC (1996) Diversity of mercury resistance plasmids obtained by exogenous isolation from the bacteria of sugar beet in three successive years. FEMS Microbiol Ecol 20:211–227

    Article  CAS  Google Scholar 

  • Mahillon J, Chandler M (1998) Insertion sequences. Microbiol Mol Biol Rev 62:725–774

    PubMed  CAS  Google Scholar 

  • Marques MV, da Silva AM, Gomes SL (2001) Genetic organization of plasmid pXF51 from the plant pathogen Xylella fastidiosa. Plasmid 45:184–199

    Article  PubMed  CAS  Google Scholar 

  • Martinez B, Tomkins J, Wackett LP, Wing R, Sadowsky MJ (2001) Complete nucleotide sequence and organization of the atrazine catabolic plasmid pADP-1 from Pseudomonas sp. strain ADP. J Bacteriol 183:5684–5697

    Article  PubMed  CAS  Google Scholar 

  • Mazel D, Davies J (1999) Antibiotic resistance in microbes. Cell Mol Life Sci 56:742–754

    Article  PubMed  CAS  Google Scholar 

  • Nield BS, Holmes AJ, Gillings MR, Recchia GD, Mabbutt BC, Nevalainen KMH, Stokes HW (2001) Recovery of new integron classes from environmental DNA. FEMS Microbiol Lett 195:59–65

    Article  PubMed  CAS  Google Scholar 

  • Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304

    Article  PubMed  CAS  Google Scholar 

  • Pansegrau W, Lanka E, Barth PT, Figurski DH, Guiney DG, Haas D, Helinski DR, Schwab H, Stanisich VA, Thomas CM (1994) Complete nucleotide sequence of Birmingham IncP alpha plasmids. Compilation and comparative analysis. J Mol Biol 239:623–663

    Article  PubMed  CAS  Google Scholar 

  • Pukall R, Tschäpe H, Smalla K (1996) Monitoring the spread of broad host and narrow host range plasmids in soil microcosms. FEMS Microbiol Ecol 20:53–66

    Article  CAS  Google Scholar 

  • Salanoubat M, Genin S, Artiguenave F, Gouzy J, Mangenot S, Arlat M, Billault A, Brottier P, Camus JC, Cattolico L, Chandler M, Choisne N, Claudel-Renard C, Cunnac S, Demange N, Gaspin C, Lavie M, Moisan A, Robert C, Saurin W, Schiex T, Siguier P, Thebault P, Whalen M, Wincker P, Levy M, Weissenbach J, Boucher CA (2002) Genome sequence of the plant pathogen Ralstonia solanacearum. Nature 415:497–502

    Article  PubMed  CAS  Google Scholar 

  • Schlosser PD, Handelsman J (2003) Biotechnological prospects from metagenomics. Curr Opin Biotechnol 14:303–310

    Article  CAS  Google Scholar 

  • Schneiker S, Keller M, Dröge M, Lanka E, Pühler A (2001) The genetic organization and evolution of the broad-host-range mercury resistance plasmid pSB102 isolated from a microbial population residing in the rhizosphere of alfalfa. Nucleic Acids Res 29:5169–5181

    Article  PubMed  CAS  Google Scholar 

  • Simpson AJ, Reinach FC, Arruda P, Abreu FA et al. (2000) The genome sequence of the plant pathogen Xylella fastidiosa. The Xylella fastidiosa Consortium of the Organization for Nucleotide Sequencing and Analysis. Nature 406:151–157

    Article  PubMed  CAS  Google Scholar 

  • Smalla K (2004) Culture-independent microbiology. In: Bull AT (ed) Microbial diversity and bioprospecting. ASM Press, Washington, DC, pp 88–99

    Google Scholar 

  • Smalla K, Sobecky P (2002) The prevalence and diversity of mobile genetic elements in environmental bacteria assessed with new tools. FEMS Microbiol Ecol 42:165–175

    Article  CAS  Google Scholar 

  • Smalla K, Cresswell N, Mendonça-Hagler LC, Wolters A, Van Elsas JD (1993) Rapid DNA extraction protocol from soil for polymerase chain reaction-mediated amplification. J Appl Bacteriol 74:78–85

    CAS  Google Scholar 

  • Smalla K, Heuer H, Götz A, Niemeyer D, Krögerrecklenfort E, Tietze E (2000a) Exogenous isolation of antibiotic resistance plasmids from piggery manure slurries reveals a high prevalence and diversity of IncQ-like plasmids. Appl Environ Microbiol 66:4854–4862

    Article  PubMed  CAS  Google Scholar 

  • Smalla K, Krögerrecklenfort E, Heuer H et al. (2000b) PCR-based detection of mobile genetic elements in total community DNA. Microbiology 146:1256–1257

    PubMed  CAS  Google Scholar 

  • Smalla K, Osborn M, Wellington EMH (2000c) Isolation and characterisation of plasmids from bacteria. In: Thomas CM (ed) The horizontal gene pool — bacterial plasmids and gene spread. Harwood Academic Publishers, London, pp 207–248

    Google Scholar 

  • Smit E, Wolters A, Van Elsas JD (1998) Self-transmissible mercury resistance plasmids with gene-mobilizing capacity in soil bacterial populations: Influence of wheat roots and mercury addition. Appl Environ Microbiol 64:1210–1219

    PubMed  CAS  Google Scholar 

  • Staley JT, Konopka A (1985) Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu Rev Microbiol 39:321–346

    Article  PubMed  CAS  Google Scholar 

  • Stokes HW, Holmes AJ, Nield BS, Holley MP, Nevalainen KMH, Mabbutt BC, Gillings MR (2001) Gene cassette PCR: sequence-independent recovery of entire genes from environmental DNA. Appl Environ Microbiol 67:5240–5246

    Article  PubMed  CAS  Google Scholar 

  • Szpirer C, Top E, Couturier M, Mergeay M (1999) Retrotransfer or gene capture: a feature of conjugative plasmids, with ecological and evolutionary significance. Microbiology 145:3321–3329

    PubMed  CAS  Google Scholar 

  • Tauch A, Schneiker S, Selbitschka W, Pühler A, Van Overbeek LS, Smalla K, Thomas CM, Bailey MJ, Forney LJ, Weightman A, Ceglowski P, Pembroke T, Tietze E, Schröder G, Lanka E, Van Elsas JD (2002) The complete nucleotide sequence and environmental distribution of the cryptic, conjugative, broad-host-range plasmid pIPO2 isolated from bacteria of the wheat rhizosphere. Microbiology 148:1637–1653

    PubMed  CAS  Google Scholar 

  • Thomas CM (2001) Paradigms of plasmid organization. Mol Microbiol 37:485–491

    Article  Google Scholar 

  • Thorsted PB, Macartney DP, Akhtar P, Haines AS, Ali N, Davidson P, Stafford T, Pocklington MJ, Pansegrau W, Wilkins BM, Lanka E, Thomas CM (1998) Complete sequence of the IncPβ plasmid R751: implications for evolution and organisation of the IncP backbone. J Mol Biol 282:969–990

    Article  PubMed  CAS  Google Scholar 

  • Top E, De Smet I, Verstraete W, Dijkmans R, Mergeay M (1994) Exogenous isolation of mobilizing plasmids from polluted soils and sludges. Appl Environ Microbiol 60:831–839

    PubMed  CAS  Google Scholar 

  • Top EM, Holben WE, Forney LJ (1995) Characterization of diverse 2,4-dichlorophenoxy-acetic acid-degradative plasmids isolated from soil by complementation. Appl Environ Microbiol 61:1691–1698

    PubMed  CAS  Google Scholar 

  • Top EM, Maltseva OV, Forney LJ (1996) Capture of a catabolic plasmid that encodes only 2,4-dichlorophenoxyacetic acid: α-ketoglutaric acid dioxygenase (TfdA) by genetic complementation. Appl Environ Microbiol 62:2470–2476

    PubMed  CAS  Google Scholar 

  • Top EM, Springael D (2003) The role of mobile genetic elements in bacterial adaptation to xenobiotic organic compounds. Curr Opin Biotechnol 14:262–269

    Article  PubMed  CAS  Google Scholar 

  • Toussaint A, Merlin C (2002) Mobile elements as a combination of functional modules. Plasmid 47:26–35

    Article  PubMed  CAS  Google Scholar 

  • Tralau T, Cook AM, Ruff J (2001) Map of the IncP1β plasmid pTSA encoding the widespread genes (tsa) for p-toluenesulfonate degradation in Comamonas testosteroni T-2. Appl Environ Microbiol 67:1508–1516

    Article  PubMed  CAS  Google Scholar 

  • Trefault N, De la Iglesia R, Molina AM, Manzano M, Ledger T, Pérez-Pantoja D, Sánchez MA, Stuardo M, González B (2004) Genetic organization of the catabolic plasmid pJP4 from Ralstonia eutropha JMP (pJP4) reveals mechanisms of adaptation to chloroaromatic pollutants and evolution of specialized chloroaromatic degradation pathways. Environ Microbiol 6:655–668

    Article  PubMed  CAS  Google Scholar 

  • Tschäpe H (1994) The spread of plasmids as a function of bacterial adaptability. FEMS Microbiol Ecol 15:23–32

    Google Scholar 

  • Turner SL, Rigottier-Gois L, Power RS, Amarger N, Young JPW (1996) Diversity of repC plasmid replication sequences of Rhizobium leguminosarum. Microbiology 142:1705–1723

    Article  PubMed  CAS  Google Scholar 

  • Van der Meer JR, Sentchilo V (2003) Genomic islands and the evolution of catabolic pathways in bacteria. Curr Opin Biotechnol 14:248–254

    Article  PubMed  CAS  Google Scholar 

  • Van Elsas JD, Fry J, Hirsch P, Molin S (2000) Ecology of plasmid transfer and spread. In: Thomas CM (ed) The horizontal gene pool — bacterial plasmids and gene spread. Harwood Academic Publishers, London, pp 175–206

    Google Scholar 

  • Van Elsas JD, Bailey MJ (2002) The ecology of transfer of mobile genetic elements. FEMS Microbiol Ecol 42:187–197

    Google Scholar 

  • Van Elsas JD, McSpadden-Gardener BB, Wolters AC, Smit E (1998) Isolation, characterization, and transfer of cryptic gene-mobilizing plasmids in the wheat rhizosphere. Appl Environ Microbiol 64:880–889

    PubMed  Google Scholar 

  • Van Overbeek LS, Wellington EMH, Egan S, Smalla K, Heuer H, Collard JM, Guillaume G, Karagouni AD, Nikolakopoulou TL, Van Elsas JD (2002) Prevalence of streptomycin resistance genes in bacterial populations in European habitats. FEMS Microbiol Ecol 42:277–288

    Google Scholar 

  • Vedler E, Vahter M, Heinaru A (2004) The completely sequenced plasmid pEST4011 contains a novel IncP1 backbone and a catabolic transposon harboring tfd genes for 2,4-dichlorophenoxyacetic acid degradation. J Bacteriol 186:7161–7174

    Article  PubMed  CAS  Google Scholar 

  • Witte W (1998) Medical consequences of antibiotic use in agriculture. Science 279:996–997

    Article  PubMed  CAS  Google Scholar 

  • Wood DW et al. (2001) The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 294:2317–2323

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Smalla, K., Heuer, H. (2006). How to Assess the Abundance and Diversity of Mobile Genetic Elements in Soil Bacterial Communities?. In: Nannipieri, P., Smalla, K. (eds) Nucleic Acids and Proteins in Soil. Soil Biology, vol 8. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-29449-X_13

Download citation

Publish with us

Policies and ethics