Mycorrhizosphere Concept

  • Sari Timonen
  • Petra Marschner
Part of the Soil Biology book series (SOILBIOL, volume 7)


Arbuscular Mycorrhizal Fungus Mycorrhizal Fungus Ectomycorrhizal Fungus Mycorrhizal Symbiosis Testate Amoeba 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen MF (1991) The ecology of mycorrhizae. Cambridge University Press, Cambridge Google Scholar
  2. 2.
    Allen MF (1992) Mycorrhizal functioning: an integrative plant-fungal process. Chapman and Hall, London Google Scholar
  3. 3.
    Azaizeh HA, Marschner H, Romheld V, Wittenmayer L (1995) Effects of a vesicular-arbuscular mycorrhizal fungus and other soil-microorganisms on growth, mineral nutrient acquisition and root exudation of soil-grown maize plants. Mycorrhiza 5:321–327 Google Scholar
  4. 4.
    Azcón-Aguilar C, Barea JM (1996) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens – an overview of the mechanisms involved. Mycorrhiza 6:457–464 Google Scholar
  5. 5.
    Bending GD, Poole EJ, Whipps JM, Read DJ (2002) Characterisation of bacteria from Pinus sylvestris-Suillus luteus mycorrhizas and their effects on root-fungus interactions and plant growth. FEMS Microbiol Ecol 39:219–227 Google Scholar
  6. 6.
    Berthelin J, Leyval C (1982) Ability of symbiotic and non-symbiotic rhizospheric microflora of maize (Zea mays) to weather micas and to promote plant growth and plant nutrition. Plant Soil 68:369–377 CrossRefGoogle Scholar
  7. 7.
    Bianciotto V, Bandi C, Minerdi D, Sironi M, Tichy HV, Bonfante P (1996) An obligately endosymbiotic mycorrhizal fungus itsel harbors obligately intracellular bacteria. Appl Environ Microbiol 62:3005–3010 PubMedGoogle Scholar
  8. 8.
    Bomberg M, Jurgens G, Saano A, Sen R, Timonen S (2003) Nested PCR detection of Archaea in defined compartments of pine mycorrhizospheres developed in boreal forest humus microcosms. FEMS Microbiol Ecol 43:163–171 Google Scholar
  9. 9.
    Bonkowski M, Jentschke G, Scheu S (2001) Contrasting effects of microbial partners in the rhizosphere: interactions between Norway spruce seedlings (Picea abies Karst.), mycorrhiza (Paxillus involutus (Batsch) Fr.) and naked amoebae (protozoa). Appl Soil Ecol 18:193–204 CrossRefGoogle Scholar
  10. 10.
    Borowicz VA (2001) Do arbuscular mycorrhizal fungi alter plant-pathogen relations? Ecology 82:3057–3068 Google Scholar
  11. 11.
    Brule C, Frey-Klett P, Pierrat J, Courrier S, Gerard F, Lemoine M, Rousselet J, Sommer G, Garbaye J (2001) Survival in the soil of the ectomycorrhizal fungus Laccaria bicolor and the effects of a mycorrhiza helper Pseudomonas fluorescens. Soil Biol Biochem 33:1683–1694 CrossRefGoogle Scholar
  12. 12.
    Brundrett M (1991) Mycorrhizas in natural ecosystems. Adv Ecol Res 21:171–313 Google Scholar
  13. 13.
    Chakravarty P, Unestam T (1987) Mycorrhizal fungi prevent disease in stressed pine seedlings. J Phytopath 118:335–340 Google Scholar
  14. 14.
    Chanway CP, Holl FB (1991) Biomass increase and associative nitrogen fixation of mycorrhizal Pinus contorta seedlings inoculated with a plant growth promoting Bacillus strain. Can J Bot 69:507–511 Google Scholar
  15. 15.
    Darbyshire JF (1994) Soil protozoa. CAB International, Wallingford, UK Google Scholar
  16. 16.
    Duchesne LC, Peterson RL (1987) The accumulation of plant-produced antimicrobial compounds in response to ectomycorrhizal fungi: a review. Phytoprotection 68:17–27 Google Scholar
  17. 17.
    Filion M, StArnaud M, Fortin JA (1999) Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms. New Phytol 141:525–533 CrossRefGoogle Scholar
  18. 18.
    Finlay RD, Söderström B (1992) Mycorrhiza and carbon flow to the soil. In: Allen M (ed) Mycorrhizal functioning: an integrative plant-fungal process. Chapman and Hall, London, UK, pp 134–160 Google Scholar
  19. 19.
    Foster RC, Marks GC (1966) The fine structure of the mycorrhizas of Pinus radiata D. Don. Aust J Biol Sci 19:1027–1038 Google Scholar
  20. 20.
    Furman TE (1966) Symbiotic relationships of Monotropa. Am J Bot 53:627 Google Scholar
  21. 21.
    Garbaye J (1994) Tansley Review No. 76: Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210 Google Scholar
  22. 22.
    George E, Marschner H (1996) Nutrient and water uptake by roots of forest trees. Z Pflanz Bodenkunde 159:11–21 Google Scholar
  23. 23.
    George E, Marschner H, Jakobsen I (1995) Role of arbuscular mycorrhizal fungi in uptake of phosphorus and nitrogen from soil. Crit Rev Biotech 15:257–270 Google Scholar
  24. 24.
    Gianinazzi S, Schüepp H, Barea M, Haselwandter K (2002) Mycorrhizal technology in agriculture – from genes to bioproducts. Birkhäuser, Basel Google Scholar
  25. 25.
    Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic Press, London Google Scholar
  26. 26.
    Hawkins H, Johansen A, George E (2000) Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant Soil 226:275–280 CrossRefGoogle Scholar
  27. 27.
    Hibbett DS (2002) Plant-fungal interactions: when good relationships go bad. Nature 419:345–346 CrossRefPubMedGoogle Scholar
  28. 28.
    Hiltner L (1904) Über neue Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriologie unter besonderer Berüksichtigung der Gründüngung und Brache. Arb Dtsch Landwirt Ges 98:59–78 Google Scholar
  29. 29.
    Hodge A (2001) Arbuscular mycorrhizal fungi influence decomposition of, but not plant nutrient capture from, glycine patches in soil. New Phytol 151:725–734 CrossRefGoogle Scholar
  30. 30.
    Hodge A (2003) Plant nitrogen capture from organic matter as affected by spatial dispersion, interspecific competition and mycorrhizal colonization. New Phytol 157:303–314 CrossRefGoogle Scholar
  31. 31.
    Hooker JE, Jaizme VM, Atkinson D (1994) Biocontrol of plant pathogens using arbuscular mycorrhizal fungi. In: Gianinazzi S, Schuepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhäuser, Basel, pp 191–200 Google Scholar
  32. 32.
    Ingham ER, Massicotte HB (1994) Protozoan communities around conifer roots colonised by ectomycorrhizal fungi. Mycorrhiza 5:53–61 Google Scholar
  33. 33.
    Jentschke G, Bonkowski M, Godbold DL, Scheu S (1995) Soil protozoa and forest tree growth – non nutritional effects and interaction with mycorrhizae. Biol Fert Soils 20:263–269 CrossRefGoogle Scholar
  34. 34.
    Johnson D, Leake JR, Ostle N, Ineson P, Read DJ (2002) In situ (CO2)-C-13 pulse-labelling of upland grassland demonstrates a rapid pathway of carbon flux from arbuscular mycorrhizal mycelia to the soil. New Phytol 153:327–334 CrossRefGoogle Scholar
  35. 35.
    Katznelson H, Rouatt JW, Peterson EA (1962) The rhizosphere effect of mycorrhizal and non-mycorrhizal roots of yellow birch seedlings. Can J Bot 40:377–382 Google Scholar
  36. 36.
    Khan MK, Sakamoto K, Yoshida T (1995) Dual inoculation of peanut with Glomus sp. and Bradyrhizobium sp. enhanced the symbiotic nitrogen fixation as assessed by N-15-technique. Soil Sci Plant Nutr 41:769–779 Google Scholar
  37. 37.
    Kim KY, Jordan D, McDonald GA (1998) Effect of phosphate-solubilizing bacteria and vesicular-arbuscular mycorrhizae on tomato growth and soil microbial activity. Biol Fert Soils 26:79–87 Google Scholar
  38. 38.
    Koide RT, Kabir Z (2000) Extraradical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyse organic phosphate. New Phytol 148:511–517 Google Scholar
  39. 39.
    Laheurte F, Leyval C, Berthelin J (1990) Root exudates of maize, pine and beech seedlings influenced by mycorrhizal and bacterial inoculation. Symbiosis 9:111–116 Google Scholar
  40. 40.
    Lapeyrie F, Chilvers GA, Bhem CA (1987) Oxalic-acid synthesis by the mycorrhizal fungus Paxillus-involutus (Batsch ex Fr) Fr. New Phytol 106:139–146 Google Scholar
  41. 41.
    Leyval C, Berthelin J (1991) Weathering of a mica by roots and rhizospheric microorganisms of pine. Soil Sci Soc Am J 55:1009–1016 Google Scholar
  42. 42.
    Leyval C, Berthelin J (1993) Rhizodeposition and net release of soluble organic compounds by pine and beech seedlings inoculated by rhizobacteria and ectomycorrhizal fungi. Biol Fert Soils 15:259–267 CrossRefGoogle Scholar
  43. 43.
    Leyval C, Laheurte F, Belgy G, Berthelin J (1990) Weathering of micas in the rhizospheres of maize, pine and beech seedlings influenced by mycorrhizal and bacterial inoculation. Symbiosis 9:105–109 Google Scholar
  44. 44.
    Leyval C, Surtiningsih T, Berthelin J (1993) Mobilization of P and Cd from rock phosphates by rhizospheric microorganisms (phosphate-dissolving bacteria and ectomycorrhizal fungi). Phosphorus Sulfur Silicon Relat Elem 77:685–688 Google Scholar
  45. 45.
    Li CY, Hung LL (1987) Nitrogen-fixing (acetylene-reducing) bacteria associated with ectomycorrhizae of Douglas-fir. Plant Soil 98:425–428 Google Scholar
  46. 46.
    Li CY, Massicotte HB, Moore LVH (1992) Nitrogen-fixing Bacillus sp. associated with Douglas-fir tuberculate ectomycorrhizae. Plant Soil 140:35–40 CrossRefGoogle Scholar
  47. 47.
    Lindahl B (2000) Ectomycorrhizal fungi raid saprotrophic ones. Mycol Res 104:386–387 CrossRefGoogle Scholar
  48. 48.
    Linderman RG, Paulitz TC (1990) Mycorrhizal-rhizobacterial interactions. In: Hornby DJ (ed) Biological control of soil-borne plant pathogens. CAB International, Wallingford, Oxon, pp 261–283 Google Scholar
  49. 49.
    Mada RJ, Bagyaraj DJ (1993) Root exudation from Leucaena-Leucocephala in relation to mycorrhizal colonization. World J Microbiol Biotech 9:342–344 Google Scholar
  50. 50.
    Marschner H (1995) Mineral nutrition of higher plants. Academic Press, London Google Scholar
  51. 51.
    Marschner P, Crowley DE, Higashi RM (1997) Root exudation and physiological status of a root-colonizing fluorescent pseudomonad in mycorrhizal and non-mycorrhizal pepper (Capsicum annuum L). Plant Soil 189:11–20 CrossRefGoogle Scholar
  52. 52.
    Marx DH (1972) Ectomycorrhizae as biological deterrents to pathogenic root infection. Phytopathology 10:429–454 Google Scholar
  53. 53.
    Massicotte HB, Melville LH, Peterson RL (2005) Structural features of mycorrhizal associations in two members of the Monotropoideae, Monotropa uniflora and Pterospora andromedea. Mycorrhiza 15:101–110 CrossRefPubMedGoogle Scholar
  54. 54.
    Molina R, Massicotte H, Trappe JM (1992) Specificity phenomena in mycorrhizal symbiosis: community-ecological consequences and practical implications. In: Allen M (ed) Mycorrhizal functioning: an integrative plant-fungal process. Chapman and Hall, London, UK, pp 357–423 Google Scholar
  55. 55.
    Mosse B, Powell CL, Hayman DS (1976) Plant growth responses to vesicular-arbuscular mycorrhiza. IX. Interactions between V.A. mycorrhiza, rock phosphate and symbiotic nitrogen fixation. New Phytol 76:331–342 Google Scholar
  56. 56.
    Näsholm T, Ekblad A, Nordin A, Giesler R, Högberg M, Högberg P (1998) Boreal forest plants take up organic nitrogen. Nature 392:914–916 CrossRefGoogle Scholar
  57. 57.
    Ng PP, Cole ALJ, Jameson PE, McWha JA (1982) Cytokinin production by ectomycorrhizal fungi Rhizopogon luteolus, Boletus elegans and Suillus luteus commonly forming mycorrhizal associations with Pinus radiata. New Phytol 91:57–62 Google Scholar
  58. 58.
    Nurmiaho-Lassila E-L, Timonen S, Haahtela K, Sen R (1997) Bacterial colonization patterns of intact Scots pine mycorrhizospheres in dry pine forest soil. Can J Microbiol 43:1017–1035 Google Scholar
  59. 59.
    Ogden CG, Pitta P (1990) Biology and ultrastructure of the mycophagous, soil testate amoeba, Phryganella acropodia (Rhizopoda, Protozoa). Biol Fert Soils 9:101–109 CrossRefGoogle Scholar
  60. 60.
    Olsson PA, Wallander H (1998) Interactions between ectomycorrhizal fungi and the bacterial community in soils with applications of different primary minerals. FEMS Microbiol Ecol 27:195–205 Google Scholar
  61. 61.
    Ponge JF (1991) Succession of fungi and fauna during decomposition of needles in a small area of Scots pine litter. Plant Soil 138:99–113 CrossRefGoogle Scholar
  62. 62.
    Qian X, ElAshker A, Kottke I, Oberwinkler F (1998) Studies of pathogenic and antagonistic microfungal populations and their potential interactions in the mycorrhizoplane of Norway spruce (Picea abies (L.) Karst.) and beech (Fagus sylvatica L.) on acidified and limed plots. Plant Soil 199:111–116 Google Scholar
  63. 63.
    Rambelli A (1973) The rhizosphere of mycorrhizae. In: Marks GL, Koslowski TT (eds) Ectomycorrhizae. Academic Press, New York, pp 299–343 Google Scholar
  64. 64.
    Read DJ (1996) The structure and function of the ericoid mycorrhizal root. Ann Bot 77:365–374 Google Scholar
  65. 65.
    Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance? New Phytol 157:475–492 Google Scholar
  66. 66.
    Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundred-million-year-old vesicular arbuscular mycorrhizas. Proc Nat Acad Sci 91:11841–11843 PubMedGoogle Scholar
  67. 67.
    Rudawska M, Gay G (1989) IAA-synthesizing activity of different ectomycorrhizal fungi in relation to nitrogen nutrition. Agr Ecosyst Environ 28:425–430 Google Scholar
  68. 68.
    Rønn R, Ekelund F, Grunert J (2001) Protozoan response to addition of the bacteria Mycobacterium chlorophenolicus and Pseudomonas chloraphis to soil microcosms. Biol Fert Soils 33:126–131 Google Scholar
  69. 69.
    Rønn R, Gavito M, Larsen J, Jakobsen I, Fredriksen H, Christensen S (2002a) Response of free-living protozoa and microorganisms to elevated atmospheric CO2 and presence of mycorrhiza. Soil Biol Biochem 34:923–932 CrossRefGoogle Scholar
  70. 70.
    Rønn R, McCaig AE, Griffiths BS, Prosser JI (2002b) Impact of protozoan grazing on bacterial community structure in soil microcosms. Appl Environ Microbiol 68:6094–6105 PubMedGoogle Scholar
  71. 71.
    Scannerini S, Bonfante-Fasolo P (1991) Bacteria and bacteria like objects in endomycorrhizal fungi (Glomaceae). In: Margulis L, Fester R (eds) Symbiosis as a source of evolutionary innovation: speciation and morphogenesis. MIT Press, Cambridge, MA, pp 273–287 Google Scholar
  72. 72.
    Schelkle M, Peterson RL (1996) Suppression of common root pathogens by helper bacteria and ectomycorrhizal fungi in vitro. Mycorrhiza 6:481–485 CrossRefGoogle Scholar
  73. 73.
    Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421 CrossRefGoogle Scholar
  74. 74.
    Siddiqui ZA, Mahmood I (1995) Biological control of Heterodera cajani and Fusarium udum by Bacillus subtilis, Bradyrhizobium japonicum and Glomus fasciculatum on pigeonpea. Fund Appl Nematol 18:559–566 Google Scholar
  75. 75.
    Simard SW, Perry DA, Jones MD, Myroid DD, Durall DM, Molina R (1997) Net transfer of carbon between ectomycorrhizal tree species in the field. Nature 388:579–582 CrossRefGoogle Scholar
  76. 76.
    Simon L, Bousquet J, Levesque RC, Lalonde M (1993) Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature 363:67–69 CrossRefGoogle Scholar
  77. 77.
    Singh S, Singh S (1996) Interaction of mycorrhizae with plant disease pathogens. Part I. Efficacy of mycorrhizal fungi as disease control agents. Mycorrhiza News 8:1–9 Google Scholar
  78. 78.
    Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, London Google Scholar
  79. 79.
    Söderström B, Finlay RD, Read DJ (1988) The structure and function of the vegetetive mycelium of ectomycorrhizal plants. IV. Qualitative analysis of carbohydrate contents of mycelium interconnecting host plants. New Phytol 109:163–166 Google Scholar
  80. 80.
    Sreenivasa M, Krishnaraj P (1992) Synergistic interaction between VA mycorrhizal fungi and a phosphate solubilizing bacterium in chilli (Capsicum annuum). Zbl Mikrobiol 147:126–130 Google Scholar
  81. 81.
    Steinberg PD, Rillig MC (2003) Differential decomposition of arbuscular mycorrhizal fungal hyphae and glomalin. Soil Biol Biochem 35:191–194 CrossRefGoogle Scholar
  82. 82.
    Straker CJ (1996) Ericoid mycorrhiza: ecological and host specificity. Mycorrhiza 6:215–225 CrossRefGoogle Scholar
  83. 83.
    Sturz AV, Carter MR, Johnston HW (1997) A review of plant disease, pathogen interactions and microbial antagonism under conservation tillage in temperate humid agriculture. Soil Till Res 41:169–189 CrossRefGoogle Scholar
  84. 84.
    Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19:1–30 Google Scholar
  85. 85.
    Tedersoo L, Kõljalg U, Hallenberg N, Larsson K-H (2003) Fine scale distribution of ectomycorrhizal fungi and roots across substrate layers including coarse woody debris in a mixed forest. New Phytol 159:153–165 CrossRefGoogle Scholar
  86. 86.
    Thomas RS, Franson RL, Bethlenfalvay GJ (1993) Separation of vesicular-arbuscular mycorrhizal fungus and root effects on soil aggregation. Soil Sci Soc Am J 57:77–81 Google Scholar
  87. 87.
    Timonen S (2000) Pine mycorrhizospheres as variable habitats for bacterial communities. In: Benedetti A, Tittarelli F, DeBertoldi S, Pinzari F (eds) Biotechnology of soil: monitoring, conservation and remediation. EurOp, Luxembourg, pp 101–106 Google Scholar
  88. 88.
    Timonen S, Jørgensen KS, Haahtela K, Sen R (1998) Bacterial community structure of Scots pine-Suillus bovinus and -Paxillus involutus mycorrhizospheres in dry pine forest soil and nursery peat. Can J Microbiol 44:499–513 CrossRefGoogle Scholar
  89. 89.
    Timonen S, Christensen S, Ekelund F (2004) Distribution of protozoa in Scots pine mycorrhizospheres. Soil Biol Biochem 36:1087–1093 CrossRefGoogle Scholar
  90. 90.
    Tisdall JM (1994) Possible role of soil micro-organisms in aggregation of soils. Plant Soil 159:115–121 Google Scholar
  91. 91.
    Tisdall JM, Smith SE, Rengasamy P (1997) Aggregation of soil by fungal hyphae. Aust J Soil Res 35:55–60 CrossRefGoogle Scholar
  92. 92.
    Tsavkelova EA, Cherdyntseva TA, Lobakova ES, Kolomeitseva GL, Netrusov AI (2001) Microbiota of the orchid rhizoplane. Microbiology 70:492–497 CrossRefGoogle Scholar
  93. 93.
    Tsavkelova EA, Lobakova ES, Kolomeitseva GL, Cherdyntseva TA, Netrusov AI (2003a) Localization of associative cyanobacteria on the roots of epiphytic orchids. Microbiology 72:86–91 Google Scholar
  94. 94.
    Tsavkelova EA, Lobakova ES, Kolomeitseva GL, Cherdyntseva TA, Netrusov AI (2003b) Associative cyanobacteria isolated from the roots of epiphytic orchids. Microbiology 72:92–97 Google Scholar
  95. 95.
    van Hees PAW, Godbold DL, Jentschke G, Jones DL (2003) Impact of ectomycorrhizas on the concentration and biodegradation of simple organic acids in a forest soil. Eur J Soil Sci 54:697–706 Google Scholar
  96. 96.
    Varese GC, Luppi-Mosca AM (1996) Surface and inner microfungal communities of Fagus sylvatica L. ectomycorrhizae. In: Szaro TM, Bruns TD (eds) First International Conference on Mycorrhizae. Springer, Berkeley, CA, p 121 Google Scholar
  97. 97.
    Wallander H (2000) Uptake of P from apatite by Pinus sylvestris seedlings colonised by different ectomycorrhizal fungi. Plant Soil 218:249–256 CrossRefGoogle Scholar
  98. 98.
    Wamberg C, Christensen S, Jakobsen I, Müller AK, Sørensen SJ (2003) The mycorrhizal fungus (Glomus intraradices) affects microbial activity in the rhizosphere of pea plants (Pisum sativum). Soil Biol Biochem 35:1349–1357 CrossRefGoogle Scholar
  99. 99.
    Wilkinson KH, Dixon KL, Sivasithamparam K (1989) Interaction of soil bacteria, mycorrhizal fungi and orchid seed in relation to germination of Australian orchids. New Phytol 112:429–435 Google Scholar
  100. 100.
    Wilkinson KG, Dixon KW, Sivasithamparam K, Ghisalberti EL (1994) Effect of IAA on symbiotic germination of an Australian orchid and its production by orchid-associated bacteria. Plant Soil 159:291–295 CrossRefGoogle Scholar
  101. 101.
    Xiao G, Berch S (1999) Organic nitrogen use by salal ericoid mycorrhizal fungi from northern Vancouver Island and impacts on growth in vitro of Gaultheria shallon. Mycologia 9:145–149 Google Scholar
  102. 102.
    Xie ZP, Staehelin C, Vierheilig H, Wiemken A, Jabbouri S, Broughton WJ, Vogellange R, Boller T (1995) Rhizobial nodulation factors stimulate mycorrhizal colonization of nodulating and nonnodulating soybeans. Plant Physiol 108:1519–1525 PubMedGoogle Scholar
  103. 103.
    Yamanaka T, Li C, Bormann B, Okabe H (2003) Tripartite associations in an alder: effects of Frankia and Alpova diplophloeus on the growth, nitrogen fixation and mineral acquisition of Alnus tenuifolia. Plant Soil 254:179–186 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Sari Timonen
    • 1
  • Petra Marschner
    • 2
  1. 1.Department of Applied BiologyUniversity of HelsinkiHelsinkiFinland
  2. 2.Soil and Land Systems, School of Earth and Environmental SciencesUniversity of AdelaideAdelaideAustralia

Personalised recommendations